| ■— | ıtorial | Earlin - t | | Monday, June 24 | ILDC | Tue | DC | II DC | ┨ | Wednesday , June 26 | ┥ | CLDC | HDC | } | ACL D.C. | II DC | |-----------------------------|-----------|----------------------|---------------|---|---|-----------------------------|---|---|-----------------------|---|----------|--|---|------------|---|---| | Tut
08:05 | utorial I | Earlinet | ICLAS Meeting | CLRC
Aula | ILRC
Gym | CLR
Aul | _ | ILRC
Gym | | CLRC ILRC Gym Gym | | CLRC
Aula | ILRC
Gym | | | ILRC
Gym | | 08:10
08:15
08:20 | | | | | | | Exh | ibition | | Exhibition | | Exh | ibition | | I | | | 08:25
08:30
08:35 | | | | Welcome Note | Welcome Note | Soh | oastian Kauczok | (invited) Sergey Khaykin | | Oliver Reitebuch | | | ynote | | (invited) Zeb Barber | (Invited) James Kasic | | 08:40
08:45 | | | | | welcome note | Hov
Cali | w Close Can You Get to
librating a Pulsed Coherent | Impact of wildfires on stratospheric aerosol | ere (7) | Challenges and achievements of the first wind lidar in space | | | Stevens | 1 | Coherent Long-Range Lidar for Autonomous Trucking at | Open-path Dual-Comb
Spectroscopy Observat | | 08:50
08:55
09:00 | | | | (invited) Aram Gragossian Performance of a coherent Doppler lidar onboard the | | Cler | ement Toupoint
nd lidar performance | Robin Wing Middle Atmospheric Doppler | ermospho | on ESA's Aeolus mission | | Coupling water, energy and ca
grand challenge for a new era | | | | Greenhouse Gas Spat
Christian Fruck
Airborne Lidar Measu | | 09:05
09:10
09:15 | | | | first US lunar lander since the
Apollo missions | (invited) Matthew Hayman Simultaneous Measurement of Water Vapor, Temperature | o par | ationship to atmospheric
rameters
emo Mathijssen | Rayleigh Winds, Thorben H. Mense Wind Measurements up to | , and the | Christian Lemmerz Aeolus Validation with the DLR Airborne 2-µm and 355 | | | | | TBD | of Anthropogenic Me
Fabien Gibert
D13C carbon isotopic | | 09:20
09:25
09:30 | | | | (invited) Brian Carroll Micropulsed Doppler lidars designed for mobile | and Aerosol Backscatter with Robert Stillwell Extending the Observational | မ္တိ of S | mparison of wind profiles Skiron3D and Windcube Os Doppler lidars | 25km based on Aerosol Xinzhao Chu High-Detection-Sensitivity | sosphere | Farzin Amzajerdian Development and Demonstration of Navigation | Aeolus | (invited) Sammy Henderson
Compact High-Power 2-
micron Transmitter for | (invited) David Winker
A Look Back at CALIPSO | 4 | | composition of CO2
Christoph Kiemle | | 09:35
09:40 | | | | platforms: Recent advances and applications in the NOAA | Range of the MicroPulse DIAL Vasura Jayaweera | dar tech
ds (5/11
uny | niaki Higashi
mprehensive Validation of | Doppler and Boltzmann Satyaki Das | iere, mes | Doppler Lidar for Planetary Joint CLRC/ILRC Session John Marketon | Joint / | Coherent Lidar Applications | Chris Hostetler | mission | particle and estimation of its size distribution by low | Airborne N2O Lidar | | 09:45
09:50
09:55 | | | | CSL Atmospheric Remote (invited) Philip Gasch A novel airborne Doppler | Temperature Calibration of a Pure Rotation Raman Lidar John Barnes | Har
Har | e Duai Doppler lidar data in
mpton, VA
bukazu Miyauchi | Gravity Wave Activity in the Arctic Middle Atmosphere Michael Gerding | Stratospl | Coherent Doppler Wind Lidar Suborbital and Orbital Activities at NASA Langley | | Albert Töws
Lag-angle compensation | Retrospective on the use of Airborne HSRL for CALIPSO Songhua Wu | lida | o o | | | 10:00
10:05
10:10 | | | | lidar system design for high resolution wind measurements | Constraining aerosol properties with the camera Alain Miffre | O Ves | ssel-Mounted Doppler
DAR | First 3-beam lidar observations of Noctilucent Yingfei Chen | ession 4: | Shoken Ishii Doppler Wind Lidar Simulator for future space application | | technique applied to a fast-
scanning long-range Doppler
Yunbin Wu | Algorithms and performance of the spaceborne ACDL/DQ-1 Fabien Marnas | on 8a: Sp | Scanning Doppler Lidar | Georgios Dekoutsid Changes in Supersa Inside and Around | | 10:15
10:20
10:25 | | | | Christoph Bollig
High-performance 1545 nm | Laboratory experiment at 180.0° backscattering angle: | Roa | onori Mori
admap of Metro Weather
develop the cutting-edge | Can High-Sensitivity Doppler
Lidar Measurements of TIMt | Ŋ | Holger Baars Two years of continuous | | Crosstalk suppression in coding coherent Doppler wind lidar by adaptive FOV | ATLID first months in Space | Sessi | Adjourn and appointment of next CLRC | Joseph Finlon
Mapping Cloud Mic
Properties to Triple | | 10:30
10:35
10:40 | | | | • • | Coffee | coh | herent Doppler lidars: ffee | Coffee | | Doppler lidar observations at Coffee | | Coffee | Coffee | | | Coffee | | 10:45
10:50 | | | | Conee | (invited) Jens Reichardt | | | (invited) Jumar Cadondon | ere | | | | Tomoaki Nishizawa | | | [a | | 10:55
11:00
11:05 | | | | (invited) Scott Brightly
Coherent Doppler Lidar for | Biomass Burning Aerosol Fluorescence Spectra | 은
mo | odels and data processing | Chlorophyll-a Profiling in
Fresh Surface Waters by
Fluorescence-Raman Lidar | s, biosph | (invited) Oliver Lux Performance of the laser transmitters and receiver | | Kim Kalmankoski Detection of molecular backscattering with fiber | Aerosol Observation using the
Space-borne Lidar ATLID and
David Donovan | 5/14) | | (invited) Richard Fe
Airborne High Spect
Resolution Lidar | | 11:10
11:15
11:20 | | | | Human Motion Detection Under Dense Foliage Obscuration | Igor Veselovskii Observations of Long- Transported North American | מ | lidar-assisted control rformance | Michael Roddewig Towards a Droneborne Maritime Lidar for Fisheries | ropertie
systems (| signal evolution during the (invited) Remy Chalex EUMETSAT EPS-Aeolus: Status | s snlo | Dave Emmit Sorting airborne DWL ocean | ALADIN Aerosol and Cloud
retrievals using ATLID-like
Artem Feofilov | issions (5 | | Measurements of A
Masanori Saito
A Pathway Toward | | 11:25
11:30
11:35 | | | | Nikolas Angelou | María Fernández Carvelo Assessment of overlap function retrievals using | Lon | uno Martin
ng-wave infrared FMCW
nging systems based on | Yudi Zhou
Shipborne Lidar for Exploring
Marine Systems | : Ocean p | Joint CLRC/ILRC Session and Outlook Thomas Flament | Joint Ae | surface returns before computing wind stress Theo Martin | Establishing a long-term cloud record from a combination of Travis Toth | e lidar m | Spare | of Microphysical Pro
Joelle Buxmann
A machine learning | | 11:40
11:45 | | | | Rayleigh-Brillouin spectrum using a coherent Doppler | Viet Le Atmospheric aerosol | Session Lau | ternal coherent detection
urent Lombard | Toshihiro Somekawa
Remote Detection and | Session 5 | Scientific activities at EUMETSAT for the proposed Patrick Vrancken | | Breaking the ct resolution limit of wind heterodyne | Creating Regional and Seasonal Climatologies of Paolo Di Girolamo | 8b: Spac | | for aerosol classific
Andreas Fix | | 11:50
11:55
12:00 | | | | Christoph Bollig Analysis of the molecular Rayleigh-Brillouin scattering | depolarization ratio with | Coh
Ran | herent Wind Lidar for Shor
nge Measurement | Identification of Plastics with | | Aeronautics lidar revisited –
Towards lidar-based gust and | d | lidars by means of a | The CALIGOLA Mission: An overview of the present | Session | | Understanding gree
gases: Insights from | | 12:05 Lur
12:10
12:15 | inen | | | of a ground-based 1545 nm Lunch | | Lun | nch | | | 12:00-12:30 Pick up Lunchpackage | | Lunch | | | Lunch | Lunch + ICLAS Meet | | 12:20
12:25
12:30 | | | | | | | | | | | | | | | | | | 12:35
12:40
12:45 | | | | | | | | | | 12:30- 13:20 Free Time / maybe chaning clothes | F | _ | | | | | | 12:50
12:55
13:00 | | | | | | | | | | | | | | | | | | 13:05
13:10 | | | | | | | | | | | | | | | | | | 13:15
13:20
13:25 | | | | | | | | | | | | | | | | | | 13:30
13:35
13:40 | | | | (invited) Xinzhao Chu | (invited) Matthias Tesche CALIPSO-derived CCN | | | Amin Nehrir Enabling Technologies for | thods | 13:30 -14:00 Meeting at Foyer talla /groups board the various buses | e | | (invited) Weibiao Chen Spaceborne Aerosol and | | Adjourn | Open ICLAS Meetin | | 13:45
13:50
13:55 | | | | Vertical Wind Measurements with High Resolution Lidars & Impacts on Upper | | (1) | | Cross-Cutting Airborne and Michael Strotkamp Novel emitter for a compact | s and me | | | in the atmospheric surface
layer: a 13-month study of
Steven Knoop | Carbon dioxide Detection Lidar (ACDL) Development (invited) Jiqiao Liu | s (5/14) | | Closing Ceremony
Adjourn | | 14:00
14:05
14:10 | | | | | Vertical Profiles of Cloud Extinction and Cloud Top Simone Lolli | ds 2 (7/11 | | general-purpose Doppler Jackson Jandreau New Lidar Technique to | hnologie | 14:00 Departure of buses to Regensburg | | Doppler lidar vertical stare measurements in the | Global CO2 Column Concentration Monitoring for the Spaceborne Aerosol and | r mission | | | | 14:15
14:20
14:25 | | | | Direct-detection airborne UV wind lidar including Quadri | Precipitation-Induced Aerosol
Reduction Using MPLNET | and clouc | | Eliminate Noise Floor from
Felix Fritzsch | · lidar tec
(6/11) | 14:00-15:30 Traveltime aprrox.until 15:15-15:30 | | Julia Menken
Atmospheric turbulence and | Matthias Alpers
MERLIN: The Franco-German | pace lida. | | | | 14:30
14:35 | | | | | Response of mixed-phase cloud microphysics to aerosol | Aerosol | Joint CLRC/ILRC Session | Coherent Doppler lidar for aerosol-cloud-dynamics Yoshitaka Jin | O1b: New | | | wind turbine wakes measured with Doppler wind James Kasic | MERLIN laser transmitter for | sion 8c: S | | | | 14:40
14:45
14:50 | | | | and Range Selective Coherent
Imaging
Marion Costella | Properties of In-cirrus
Contrails from Airborne | ion O2b: | | Use of double-passed Michelson interferometer for Philippe Linsmayer | Session (| | | Boundary and Turbulence
Isotropy using Airborne | space borne methane sensing Alessandra Ciapponi Aeolus-2: Status of pre- | Ses | ı | | | 14:55
15:00
15:05 | | | | ' | Moritz Haarig The measured spectral slope of the lidar ratio between 355 | Sess | | Wind speed determination from a UV direct detection (invited) Ed Eloranta |)6 Joint | | | Clement Toupoint Wind lidar performance relationship to atmospheric | development activities Coffee + Posters | | ı | | | 15:10
15:15
15:20 | | | | column measurement Coffee + Posters | Cristofer Jimenez Investigating clouds and aerosol-cloud interactions | | | High Vertical Resolution Measurements off Backscatter, Depolarization, | Session C | | | parameters Perrine Meynard Turbulent coherent structures | | | ı | | | 15:25
15:30
15:35 | | | | | Coffee + Posters | Cof | ffee + Posters | Coffee + Posters | | 15:15-15:30 Arrivel Regensburg 7 meeting Ponit Busterminal | | in the atmospheric surface layer: detection on Doppler | Sessions P7/P8/P9/P10 | | ı | | | 15:40
15:45 | | | | | Sessions P1/P2 | | | Sessions P3/P4/P5/P6 | \vdash | 45.45 46.00.6t (1) - 0 - 11 - 1 - 12 - 1 | | Coffee + Posters | 555516115 1 7/1 6/F 3/F 1U | | ı | | | 15:50 | | | | | | | | | | 15:45-16:00 Start of the Guided City Tour in Regensburg (Duration guided tours 2-2,25 hours) | | | | | ı | | | 15:55
16:00
16:05 | | | | Exhibition
William Patino Rosas
Multi-heterodyne lidar based | Exhibition | Exh | hibition | Exhibition | | | | | Exhibition | | ı | | | 16:10
16:15
16:20 | | | | on electro-optic dual comb
spectroscopy for greenhouse
Mathys Thiers | | | | | | | | CLRC Poster Session | | | ı | | | 16:25
16:30
16:35 | | | | Hybrid fiber/bulk DIAL- Doppler lidar for CO2 and wind measurement at 2.05 | | | | | | | | Exhibition | | | ı | | | 16:40
16:45 | | | | Kenya Yano
Demonstration of coherent | | | | | | | | | | | ı | | | 16:50
16:55
17:00 | | | | differential absorption lidar for wind and water vapor Masaharu Imaki | | | | Charles | | | | | (invited) Thomas Trickl | | ı | | | 17:05
17:10
17:15 | | | | Application of coherent lidar technique: water vapor DIAL and data assimilation for | | ransport | | Stephan De Wekker Mobile Wind Lidar measurements of the spatial | boundary | | | | Is there a correlation between tropospheric ozone and climate? | es (4/8) | ı | | | 17:20
17:25
17:30 | | | | | Kylie Hoffman Remote Sensing Observations for Analysis of Planetary | ospherica
aing (2/4) | | Syed Abbas Using a Combination of Doppler Lidars to Understand | Flux and | | | | Thomas Ely Mobile Tropospheric Ozone Differential Absorption Lidar | race gas | ı | | | 17:35
17:40
17:45 | | | | | Yasukuni Shibata Characteristics of CO2 DIAL Technique for Measurement | : Atr | Joint CLRC/ILRC Session | Johannes Speidel Water vapor measurements throughout the planetary | sion O6: I | | | | Jia Su
Validation of NO2
Measurements Using a Three- | sion 9a: 1 | ı | | | 17:50
17:55
18:00 | | | | | spare | Session | | Arnoud Apituley Deep-Pathfinder: A Near-Rea Time Boundary Layer Height | Joint Ses: | | | | Julien Lahyani
Raman Lidar for H2
Monitoring in Harsh | Ses | ı | | | 18:05
18:10 | | | | | | | | - Layer Height | | 18.00-18:30 Boarding ship (2 ships) Departure ship | | | | | ı | | | 18:15
18:20 | Icebreak | ker / Performance (^ | 22:00) | | Dinner | | Di | inner | | | | Barbecue and Awa | rd Ceremony (till late) | | ı | | | 18:20
18:25
18:30 | | | | | | | | | | 18:00 22:20 Shin town with div | | | | | | | | | | | | | | | | | | 18:00-22:30 Ship tour with dinner 22:30 arrival ship | | | | | | |