Technologien
Eine bewegliche Einhausung ermöglicht einen effektiven Einsatz von Schutzgas, wodurch eine hohe Prozessqualität erzielt wird. - © Fraunhofer IPT
22.11.2020

Antriebswellen: Ressourcenschonende Alternative für die Fertigung

Antriebswellen: Ressourcenschonende Alternative für die Fertigung

Wellen sind als Kraft- und Drehmomentüberträger unscheinbare und doch unersetzliche Bestandteile von Autos, Flugzeugen, Schiffen oder Windkraftanlagen. Weltweit werden jedes Jahr Milliarden dieser Bauteile in unterschiedlichen Größen produziert, die meisten mit Absätzen oder anderen Oberflächenmerkmalen. Ein Team des Fraunhofer-Instituts für Produktionstechnologie IPT entwickelte nun das additive Verfahren „Express Wire Coil Cladding“ (kurz: EW2C) zur Oberflächenbearbeitung von Wellen. Das EW2C-Verfahren bietet eine ressourcenschonende und kostengünstige Alternative zu gängigen abtragenden Verfahren der Wellenbearbeitung wie dem Drehen.

Das Express Wire Coil Cladding ist ein drahtbasiertes additives Fertigungsverfahren, bei dem ein Bauteil oder eine Struktur mit einem Laser durch schichtweises Verbinden metallischer Werkstoffe aufgebaut wird. Im Gegensatz zum klassischen Laserauftragschweißen wird der Werkstoff nicht kontinuierlich als Draht zugeführt. Stattdessen wird der Draht in Form von Spiralen an die gewünschten Stellen der Welle geschoben und dort mit einem Hochleistungslaser aufgeschweißt. Da die Drahtspiralen unter Spannung auf der Welle platziert sind, können sie während des Laserprozesses nicht verrutschen.

„Unsere Idee war es, die Wellenfertigung nicht nur kosmetisch zu verändern. Wir wollten ein leistungsfähiges Verfahren entwickeln, das die Fertigung komplexer Wellen kostengünstiger und ressourceneffizienter macht“, sagt Robin Day, Leiter der Abteilung Additive Fertigung und Laserstrukturieren am Fraunhofer IPT.

Die drei Schritte des EW2C-Verfahrens: Vorplatzieren, Aufschweißen und Nachbearbeiten (von rechts nach links). - © Fraunhofer IPT
Die drei Schritte des EW2C-Verfahrens: Vorplatzieren, Aufschweißen und Nachbearbeiten (von rechts nach links). © Fraunhofer IPT
Materialmix und rascher Strukturaufbau

Die Untersuchungen der vergangenen Monate stimmen die Fraunhofer-Wissenschaftler zuversichtlich: Die Spannung der Drahtspiralen verbessert die Prozessstabilität im Vergleich zum herkömmlichen drahtbasierten Laserauftragschweißen um den Faktor Zehn, da ungewollte Bewegungen des Drahts während des Schweißvorgangs verhindert werden. Auch konnten die Forscher beweisen, dass sich das EW2C-Verfahren sehr gut für den Auftrag große Schichtstärken eignet: In einer einzelnen Schicht konnten sie, je nach Drahtdicke, zwischen 0,5 und 2 Millimeter Material aufbringen. Dabei stellten sie fest, dass ihr Verfahren mit den Taktzeiten beim Drehen mithalten kann: In den Versuchsreihen dauerte das Aufschweißen einer 25 Millimeter hohen Spirale aus Inconel 718 mit 1,2 Millimeter Drahtdurchmesser auf eine Stahlwelle mit einem 35 Millimeter-Außendurchmesser nur knapp 60 Sekunden.

Durch das Wiederholen der Schritte ließen sich rasch mehrere Millimeter Material auftragen. Selbst unterschiedliche Materialkombinationen sind dadurch möglich, sodass neben dem Aufbau von Geometrien auch eine technische Funktionalisierung der Bauteiloberfläche gelingen kann.

Eine bewegliche Einhausung ermöglicht einen effektiven Einsatz von Schutzgas, wodurch eine hohe Prozessqualität erzielt wird. - © Fraunhofer IPT
Eine bewegliche Einhausung ermöglicht einen effektiven Einsatz von Schutzgas, wodurch eine hohe Prozessqualität erzielt wird. © Fraunhofer IPT
Weiterentwicklungen für massive Wellen, dünnwandige Hohlwellen und Rohre

Um das neue Verfahren, das bereits zum Patent angemeldet ist, noch weiter zu verbessern, arbeitet das Team von Robin Day an einer weiteren Optimierung der Prozessstabilität und der Automatisierung des Prozesses: Verschiedene Vorrichtungen zum automatisierten Platzieren der Drahtspiralen auf den Wellen sind bereits in der Erprobung. „Um die Prozessgeschwindigkeit weiter zu steigern, experimentieren wir damit, die Brennfleckgeometrie zu vergrößern und so mehrere Spiralwendeln gleichzeitig zu bestrahlen und aufzuschmelzen“, erläutert Robin Day. Darüber hinaus sollen zukünftig durch Kombination unterschiedlicher Spirallängen und weiterer Drahtwerkstoffe auch hochkomplexe Volumenelemente auf Wellen aufgebracht werden. Zu diesem Zweck testen die Forscher die Eignung des Verfahrens ebenso für massive Wellen wie auch für dünnwandige Hohlwellen und Rohre.

Mit integrierter Sensorik in der vorhandenen Maschinenumgebung am Fraunhofer IPT werden während des Prozesses zusätzlich unterschiedliche Daten erfasst und mit Ansätzen der künstlichen Intelligenz weiterverarbeitet. Die aufbereiteten Daten sollen die Basis bilden, um den EW2C-Prozess für unterschiedliche Werkstoffe und Prozessparameter zu modellieren und aktiv zu regeln. „Durch Konzepte wie EW2C kann es gelingen, Innovationsschübe in Branchen auszulösen, die sich seit Jahrzehnten zwar evolutionär, jedoch nicht revolutionär weiterentwickelt haben. Die Additive Fertigung bietet besonders im Metallbereich großes Potenzial. Wir haben gerade erst angefangen, diesen Weg zu beschreiten“, sagt Robin Day begeistert.

(Quelle: Presseinformation des Fraunhofer-Instituts für Produktionstechnologie IPT)

Schlagworte

Additive FertigungAufschweißenFügetechnikLasertechnologienSchweißtechnik

Verwandte Artikel

Der neue Produktionsprozess mit der EHLA3D-Technologie ermöglicht es, komplexe Geometrien effizient zu produzieren, mit hochfesten Materialien zu beschichten oder zu reparieren.
02.07.2024

Eine neue Dimension der Additiven Fertigung

Vom Laserauftragschweißen zur Additiven Fertigung: Ein Forschungsprojekt hat das Potenzial, die Materialverarbeitung mit EHLA3D zu revolutionieren.

Additive Fertigung EHLA EHLA3D Extremes Hochgeschwindigkeits-Laserauftragschweißen Fertigungstechnik Hochgeschwindigkeits-Laserauftragschweißen Kreislaufwirtschaft Laserauftragschweißen Lasertechnologien Luftfahrt Raumfahrt Schweißtechnik Werkzeugbau
Mehr erfahren
Mit dem richtigen Schweißbrenner lässt sich ein optimales Schweißergebnis in Verbindung mit maximaler Produktivität erzielen.
28.06.2024

Wirtschaftlich und prozesssicher schweißen – wie geht das?

Der Schweißbrenner wird oft unterschätzt und ist doch so wichtig für den Schweißprozess. Wie sich ein optimales Schweißergebnis in Verbindung mit maximaler Produktivität...

Schweißbrenner Schweißtechnik Verschleiß
Mehr erfahren
Achim Liebenau, Jens Brill, Hilko Malek, Dirk Zimmermann, Uwe Kloss.
26.06.2024

Brillgruppe übernimmt Korsing Schweißtechnik

Im Zuge einer zukunftsorientierten Nachfolgeregelung gibt die Korsing Schweißtechnik GmbH ihren Zusammenschluss mit der BRILLGRUPPE bekannt. Diese bedeutende Entwicklung...

Arbeitsschutz Handwerksbedarf Industriebedarf Schweißtechnik Schweißzusatzwerkstoffe
Mehr erfahren
Vielseitig einsetzbar: Die Speedglas Schweißmasken der Serie G5-03 sind für unterschiedliche Schweiß-und Schleifaufgaben geeignet.
25.06.2024

Die neue 3M Speedglas Schweißmaske G5-03

3M hat die die fünfte Generation der 3M Speedglas Schweißschutzmasken entwickelt, um besseren Komfort und sichereres Arbeiten zu gewährleisten. Dazu gehört die G5-03 – ei...

Arbeitsschutz Arbeitssicherheit Schweißerhelme Schweißermasken Schweißmasken Schweißtechnik
Mehr erfahren
Das Aufschneiden gebrauchter oder fehlerhafter Batterien mit Hilfe von Lasertechnik ermöglicht die Skalierung des Batterie-Recycings.
24.06.2024

Batterierecycling im industriellen Maßstab

Autobauer und Batteriehersteller können jetzt gebrauchte oder fehlerhafte Batterien von E-Autos im industriellen Maßstab recyceln. TRUMPF entwickelt Lasersysteme, die Bat...

Batterierecycling Battterieproduktion E-Mobilität Kreislaufwirtschaft Laserschneiden Laserschweißen Laserstrahlschneiden Laserstrahlschweißen Lasertechnik Lasertechnologien
Mehr erfahren