Trendthema
07.09.2024

Best Practice: Einstieg in das maschinelle Lernen

Digitalisierung und Industrie 4.0 in der Schweißtechnik – Best Practice: Einstieg in das maschinelle Lernen am Beispiel der Qualitätsüberwachung mit Schweißprozessdaten

Seit fünf Jahren befasst sich die DVS-Arbeitsgruppe „Industrie 4.0“ mit den Möglichkeiten von Digitalisierung und Industrie 4.0 in der Schweißtechnik. Ziel der Arbeitsgruppe ist es, insbesondere kleinen und mittleren Unternehmen (KMU) die Vorteile und den Nutzen, aber auch die Hürden und Grenzen von Digitalisierungslösungen näherzubringen. Nach dem Auftakt in SCHWEISSEN UND SCHNEIDEN 5/2024 werden in loser Folge weitere Best-Practice-Lösungen aus dieser Arbeitsgruppe vorgestellt.

Schwerpunkt: Datenpool/Datenanalyse

Qualitätsüberwachung bleibt in der Schweißtechnik nicht nur im geregelten Bereich und bei der zerstörenden Prüfung ein entscheidendes Thema, sondern auch darüber hinaus. Das allgemeine Sicherstellen der Fertigungsqualität ist in jedem Herstellerbetrieb ein Thema, erfordert allerdings gut geschultes Personal und hohen Aufwand. Wie kann hier mit modernen Methoden wie dem maschinellen Lernen ein Beitrag geleistet werden? Das folgende Beispiel kann dabei helfen, Qualitätsmerkmale wie ein a-Maß schon frühzeitig aus leicht verfügbaren Prozessdaten abzuschätzen und damit die Qualitätsüberwachung zu unterstützen.

Maschinelles Lernen, künstliche Intelligenz (KI) oder neuronale Netze sind ohne Frage die großen Treiber der aktuellen Zeit – aber auch ziemlich abstrakt. Wie soll man da irgendetwas lernen, wenn sich schon der Lehrling höchstens in Schweißdraht-Netzen verheddert? Universelle, fertig ausgebildete „maschinelle Gesellen“ – d.h. vortrainierte neuronale Netze, auf denen Anwendungen wie ChatGPT basieren – sind in der Schweißtechnik noch selten. Wie kann man sich also selbst an das maschinelle Lernen wagen?

© DVS
© DVS
Beschreibung der Lösung

Dies gelingt genauso wie in einer guten Ausbildung: mit einem erfahrenen Meister und viel Geduld. Nicht anders funktioniert heute auch ein Großteil des maschinellen Lernens – das sogenannte überwachte maschinelle Lernen. „Überwacht“ heißt in diesem Zusammenhang, dass der erfahrene Meister den Lehrling begleitet und ihm sagt, dass die eine Schweißnaht gut ist und die andere nicht.

Einstieg in das Thema

Der Einstieg erfolgt beim Lichtbogen-schweißen z. B. mit dem Messen von Schweißstrom und Schweißspannung sowie – ganz wichtig – mit einer zugehörigen Notiz, ob die Schweißung gut war oder nicht. Werden einfach nur Daten erfasst, ohne sie mit einem Resultat zu beschriften bzw. zu verknüpfen, dann versteht auch der beste Lehrling nur Bahnhof.

Die Grundlage sind also Datenpaare aus erfassten Messwerten und Beschriftungen bzw. „Labels“. Wenn die Daten per Hand erfasst werden, lassen sich bereits in Excel erste Modelle erzeugen. Wird z.B. die Schweißdrahtgeschwindigkeit gemessen und mit dem a-Maß beschriftet, verhalten sich beide Angaben kontinuierlich zueinander. Ein klassisches Stichwort ist hier die lineare Regression bzw. die Gleichung der Trendlinie in einem XY-Punktdiagramm.

© pixabay.com/Gerd Altmann
© pixabay.com/Gerd Altmann

Werden jedoch Daten erfasst, die mit „gut“ oder „schlecht“ beschriftet werden, zielt man auf klar abgegrenzte Gruppen, in die die Messung fallen kann. Ein bekannter Algorithmus ist hier das sogenannte K-Means Clustering.

Spätestens hier kommt die Geduld des Meisters zum Tragen. Hinter KI, maschinellem Lernen und neuronalen Netzen verbirgt sich trockene Statistik, die fast immer von großen Datenmengen profitiert.

Was haben wir bis hierhin erreicht? Ein Modell, das uns sagt, welches a-Maß wahrscheinlich zu erwarten ist oder ob die Schweißung wahrscheinlich gut oder schlecht ist. Wahrscheinlich? Genau! Weil wir beim maschinellen Lernen sozusagen mit beiden Füßen in der Statistik stehen, sollten wir ab sofort vorsichtig mit Festlegungen sein. Wurde also nicht nur das erste Modell erzeugt bzw. trainiert, sondern auch gelernt, (wahrscheinlich) einzuschätzen, ist der Einstieg geschafft.

© pixabay.com/Gerd Altmann
© pixabay.com/Gerd Altmann
Aufwand, Komplexität und Kosten

Mit dem Einstieg mittels einfacher Software wie Excel oder Python ist der finanzielle Aufwand gering bis nicht vorhanden. Erst wenn dedizierte Messtechnik und Dateninf-rastruktur angeschafft wird, entstehen häufig nennenswerte Kosten. Der höhere – und häufig unterschätzte – personelle Aufwand entsteht durch die sorgfältige Dokumentation und das Beschriften der Daten. Mit guten Daten lassen sich schnell Erfolge erzielen und im Zweifel Experten begeistern, die die Anwender bei komplexen Fragestellungen unterstützen können.

Vorteile und Nutzen der Lösung

Der direkte Nutzen und das Ziel liegt darin, die Qualitätsüberwachung ohne großen Mehraufwand zu unterstützen – mit allen denkbaren positiven Folgen wie Produktivi-tätssteigerung oder Kostenreduktion. Der indirekte Vorteil liegt darin, dass man mit den erfassten Daten eine neue Perspektive auf die Produktion erhält und ein besseres Verständnis bekommt, wie mächtig große Datenbanken sind, was den Charme des maschinellen Lernens ausmacht und dass die Ausbildung eines „maschinellen Lehrlings“ auch in der Schweißtechnik praktisch umsetzbar ist.

(Autor: Dr.-Ing. Samuel Mann (SFI/IWE) Digitalization and Automation Plasma Additive GmbH, Herzogenrath)

Schlagworte

KIMaschinelles LernenQualitätsüberwachungSchweißnähteSchweißtechnik

Verwandte Artikel

27.03.2025

ABB ranked second top Swiss company for patent applications

With 540 patent applications, ABB has secured second place among Swiss companies in the European Patent Office’s (EPO) Patent Index 2024, jumping from fourth place in 202...

AM Applications Artificial Intelligence Cutting Engineering EU Industrie KI Software Sustainability Technologie Technology
Read more
26.03.2025

Swiss Steel Group stays on strategic path amidst challenging market conditions

In a weak market environment, sales volume of Swiss Steel Group declined by 5.1% to 1,056 kilotons in 2024, with revenue falling by 14.3% to EUR 2,432 million. EBITDA imp...

AM Automotive Engineering EU Import KI Metal Steel
Read more
Optimale Schnittkanten mit dem Cutting Assistant
24.03.2025

„Cutting Assistant“ verbessert mit KI die Kanten beim Laserstrahlschneiden

Mit dem „Cutting Assistant“ zeigt Trumpf auf seiner Hausmesse Intech eine Lösung, die mithilfe von Künstlicher Intelligenz (KI) die Qualität der Schnittkanten beim Lasers...

Fachkräftemangel KI Laserstrahlschneiden Optimierung Schnittkanten
Mehr erfahren
21.03.2025

ABB and Charbone Hydrogen sign agreement

ABB and Charbone Hydrogen Corporation – an integrated green hydrogen production company based in Montreal, Canada – have signed a Memorandum of Understanding (MoU) agreem...

Automation Automotive Carbon Decarbonization Electric Electrification Electrolyzer Emissions Energy Energy Efficiency FuE Gas Green Hydrogen Hydrogen KI MMA Vehicles
Read more
19.03.2025

New fields of application for flexible OCT edge tracking

Blackbird Robotersysteme GmbH, manufacturer of system solutions for remote laser welding, has significantly advanced its award-winning solution for OCT edge tracking.

AI AM Automation KI Laser Laser Welding OCT Robot Roboter Robotersysteme Software Welding
Read more