International
© Wolf_TU Graz
31.08.2024

Adhesive-Free Joining of Wood and Metal

New Joining and Additive Manufacturing Processes Allow Adhesive-Free Joining of Wood and Metal

The renewable raw material wood is climate-neutral and at the same time light and strong, making it fundamentally attractive for use in vehicle manufacturing. One challenge to date has been joining the wood and the other materials in the vehicle, such as metals and polymer composites, in a robust way. The research team led by Sergio Amancio from the Institute of Materials Science, Joining and Forming of Graz University of Technology (TU Graz) – Gean Marcatto, Awais Awan, Willian Carvalho and Stefan Herbst – has now successfully tested two techniques by which extremely strong joints can be achieved without using adhesives or screws. The application of the techniques to wood is patent pending and could be used in the aircraft, automotive and furniture industries.

Joining technology and additive manufacturing enable wood to replace less sustainable materials

The two novel manufacturing techniques are suitable for their own areas of application. Beech, oak, carbon fibre-reinforced polyamide and polyphenylene sulphide, stainless steel 316L, and Ti-64 alloys, were used as test materials. “Our motivation is clearly environmental protection,” says Sergio Amancio. With new manufacturing processes, the renewable raw material wood could replace components made from energy-intensive or difficult-to-recycle materials.

 

© Wolf_TU Graz
Addjoining uses 3D printing to print a component made of plastic composites onto wood. © Wolf_TU Graz
AddJoining: 3D printing leads to joining via the wood pores

With the AddJoining technique, a component made of polymer composite is affixed to and printed directly onto a surface – in this case wood – using a 3D printing process. The printed material penetrates into the wood pores, where a chemical reaction occurs, similar to the reaction of glue with wood. The resulting connections were highly successful in mechanical load tests. “After the joint fractured, we were able to find polymer in the wood pores and broken wood fibres in the polymer, which suggests that the fracture occurred in the wood and polymer, but not at the joint,” explains Gean Marcatto, who works on this process as a postdoc at the institute. These successful tests were carried out on the untreated wood surface. Even more durable joints could be achieved by introducing a micro- or nano-structure into the wood through laser texturing or etching, which increases the pores and enhances the bonding surfaces. “But we wanted to work with as few steps as possible and, above all, without chemicals,” says Sergio Amancio, explaining the underlying idea. “We can use this technology particularly well with complicated 3D geometries because the components are printed directly onto the surface – in whatever geometry is required.”

© Wolf_TU Graz
F. l. t. r.: Awais Awan, Sergio Amancio and Gean Marcatto from the Institute Institute of Materials Science, Joining and Forming at TU Graz © Wolf_TU Graz
Ultrasonic joining ensures a stable spot joint

In Ultrasonic Joining, high-frequency vibration with low amplitude is applied to the wooden component using a sonotrode. In contact with the base component – in this case, polymer or a polymer composite material – the friction generates heat at the interface which melts the surface of the polymer part. Molten polymer infiltrates into the naturally porous surface of the wood. In this way, a very stable spot joint can be achieved, from a mixture of mechanical interlocking (because the melted plastic solidifies again in the wood) and adhesion forces. “This technique is particularly suitable for large components and 2D structures since we achieve a precisely localized spot joint,” explains Awais Awan, who dedicated his doctorate to joining technology using ultrasonic energy. These spot joints were also mechanically tested with great success. The joints could also be further strengthened by pre-treatment of the wood surface such as laser texturing.

(Source: TU Graz Press Release)

Schlagworte

Additive ManufacturingAMFrictional HeatJoiningLightweight ConstructionUltrasonic Construction

Verwandte Artikel

17.02.2025

Infrastructure is Key Factor for Energy Transition

Wires, cables and pipes are often referred to as the lifelines of our modern society. Many may now think directly of the supply of essentials such as electricity and the...

Cables Infrastructure Joining Joining Plastics Pipes Plastics Welding Wires
Read more
: Landrat Marco Voge (links) überreicht die Sterneurkunde der Regionale 2025 an Stefan Schmidt (Mitglied der Geschäftsführung Kunststoff-Institut Lüdenscheid)
30.01.2025

Auszeichnung für Kunststoff-Institut Lüdenscheid

Im Rahmen der Regionale 2025 erhält das Kunststoff-Institut Lüdenscheid den dritten Stern für sein Projekt zur Weiterentwicklung der 3D-Drucktechnik für Wasserstoffanwend...

Additive Fertigung Additive Manufacturing Förderprogramm Kunststoff Kunststoffforschung Wasserstoffanwendungen Wire Arc Additive Manufacturing
Mehr erfahren
29.01.2025

Automation of Post Processing Operations

For automating the previously conducted manual post processing operation Aitiip Technology Center purchased a S1 shot blasting machine from AM Solutions.

3D-Processing AM Manufacture Processing
Read more
28.01.2025

3D Printing for Space Exploration and Innovation

On January 22, 2025, the TruPrint 3000, a state-of-the-art 3D metal printing system, was officially inaugurated at the Materials Testing Institute (MPA) of the University...

3D-Printing Additive Manufacturing AM
Read more
09.01.2025

SCHWEISSEN & SCHNEIDEN on Track for Success

Next year's edition of SCHWEISSEN & SCHNEIDEN from 15 through 19 September will offer an exclusive setting under the motto “Join the Future”, which will strengthen the co...

Cutting Fair Joining SCHWEISSEN & SCHNEIDEN Surfacing Trade Fair Welding
Read more