Technologien
Schub für neue Antriebe: Laserauftragschweißen (LMD) soll für eine schnellere und kostengünstigere Produktion von Antriebsdüsen für die nächste Raketengeneration des Ariane-Programms sorgen (im Bild: erfolgreicher Start einer Ariane 5). - © ESA/CNES/Arianespace
18.10.2024

Mit 3D-Druck zur grünen Luft- und Raumfahrt

Mit 3D-Druck zur grünen Luft- und Raumfahrt

Die Vorgaben der Europäischen Kommission sind ehrgeizig: Die ReFuelEU Aviation-Verordnung schreibt eine Drosselung der CO₂-Emissionen der Luftfahrt bis zum Jahr 2050 um 60 Prozent im Vergleich zu 1990 vor. Geplant ist außerdem ein umfassendes EU-Weltraumgesetz (EUSL) unter anderem mit Regeln zur Nachhaltigkeit von Weltraumaktivitäten. Unterstützung erhalten die Aerospace-Unternehmen vom Fraunhofer-Institut für Lasertechnik ILT aus Aachen und seinen neuen additiven Fertigungsverfahren, die den ökologischen Fußabdruck erheblich verbessern und die Produktionskosten senken.

„Wie kann Luftfahrt grüner gestaltet werden?“, fragt Luke Schüller, wissenschaftlicher Mitarbeiter am Fraunhofer ILT, in einem Fachbeitrag und nennt auch gleich die Antwort: Strenge politische Klimaschutzvorgaben mit Leichtbau, 3D-Druck und neuen Hochleistungswerkstoffen umsetzen.

Eine Hauptrolle spielt das LPBF-Verfahren (Laser Powder Bed Fusion), bei dem Metallpulver schichtweise mit dem Laserstrahl verschmolzen wird. Diese Methode ermöglicht die Herstellung komplexer und hochfester Bauteile, die nicht nur leichter, sondern auch widerstandsfähiger sind – wichtige Eigenschaften in der Luftfahrt von morgen.

„Durch gezielte Prozessanpassungen im Laser Powder Bed Fusion-Verfahren können wir eine Bauteildichte von über 99,5 Prozent und eine hohe Aufbaurate von mehr als 100 cm³/h erreichen.“ Luke Schüller, Fraunhofer ILT. - © Fraunhofer ILT, Aachen
„Durch gezielte Prozessanpassungen im Laser Powder Bed Fusion-Verfahren können wir eine Bauteildichte von über 99,5 Prozent und eine hohe Aufbaurate von mehr als 100 cm³/h erreichen.“ Luke Schüller, Fraunhofer ILT. © Fraunhofer ILT, Aachen
Teamwork mit Materialherstellern: Spezialpulver für die Wasserstoff-Zukunft

Das Fraunhofer ILT arbeitet an der Entwicklung im Rahmen der Forschungsinitiative TIRIKA (Technologien und Innovationen für eine ressourcenschonende, klimafreundliche Luftfahrt) des Bundesministeriums für Wirtschaft und Klimaschutz. Der Schwerpunkt liegt auf der Nutzung von Wasserstoff als emissionsfreien Energieträger für die Luftfahrt. Die Fachleute haben zusammen mit Materialherstellern spezielle Pulver entwickelt, die den hohen Anforderungen der Luftfahrtindustrie für Wasserstoffantriebe gerecht werden. Die Experten haben LPBF-Prozesse für handelsübliche Werkstoffe entwickelt und schließlich in Zusammenarbeit mit den Partnern durch verschiedene Prüfverfahren validiert.

„Durch gezielte Prozessanpassungen im LPBF-Verfahren können wir eine relative Bauteildichte von über 99,5 Prozent und eine hohe Aufbaurate von mehr als 100 cm³/h erreichen“, erklärt Schüller. Die Aluminiumlegierungen sind nicht nur leicht und hochfest, sondern auch widerstandsfähig gegenüber Wasserstoff, der bei hohen Temperaturen und Drücken zu Versprödung und Materialermüdung führen kann. Das macht sie zu idealen Kandidaten für den Einsatz in den zukünftigen emissionsfreien Wasserstoff-Triebwerken. Hinzu kommt: Die neuen speziellen Pulver ermöglichen dank des gleichmäßigen Laser-Schmelzverfahrens komplexe Geometrien und Funktionsstrukturen, die mit herkömmlichen Verfahren wie Gießen oder Schmieden nicht verwirklichbar sind.

Elektronischer Erkennungsdienst für 0,4 Millimeter-Partikel

Während des Fertigungsprozesses erkennt eine präzise Sensorik Artefakte bis zu einer Größe von 0,4 Millimetern direkt im Pulverbett sowie im Schmelzprozess. So können zeitaufwändige nachgelagerte Prüfungen minimiert und die Produktionseffizienz erheblich gesteigert werden.

„Das Besondere ist, dass wir durch LMD die Geschwindigkeit und Wirtschaftlichkeit bei der Herstellung neuartiger Raketendüsen drastisch verbessern.“ Min-Uh Ko, Gruppenleiter Additive Fertigung und Reparatur LMD am Fraunhofer ILT. - © Fraunhofer ILT, Aachen / Ralf Baumgarten
„Das Besondere ist, dass wir durch LMD die Geschwindigkeit und Wirtschaftlichkeit bei der Herstellung neuartiger Raketendüsen drastisch verbessern.“ Min-Uh Ko, Gruppenleiter Additive Fertigung und Reparatur LMD am Fraunhofer ILT. © Fraunhofer ILT, Aachen / Ralf Baumgarten

Fortschrittliche Verfahren beeinflussen jedoch nicht nur die Qualität und Effizienz der Produktion, sondern auch deren ökologische Bilanz. Das Fraunhofer ILT setzt beim Bewerten der Umweltfreundlichkeit von additiven Fertigungsprozessen auf Life Cycle Assessment (LCA). Hierbei wird der gesamte Lebenszyklus eines Bauteils betrachtet – von der Rohmaterialbeschaffung über die Fertigung bis zum Recycling. „Das Life Cycle Assessment ist für uns ein unverzichtbares Instrument, um die Umweltwirkungen von Produkten über ihren gesamten Lebenszyklus hinweg zu bewerten und nachhaltige Alternativen zu identifizieren“, sagt Dr. Tim Lantzsch, Leiter der Abteilung Laser Powder Bed Fusion am Fraunhofer ILT. Um diesen umfassenden Prozess effektiv zu gestalten, ist es jedoch entscheidend, bereits in einer frühen Phase der digitalen Wertschöpfungskette qualitativ hochwertige und aussagekräftige Daten zu erhalten.

Dreifaches Plus für aufwändiges Verfahren

Drei wichtige Argumente sprechen für diesen anfangs sehr mühevollen Weg: Erstens ermöglichen Daten eine schnellere und effizientere Gestaltung von Anlaufprozessen für neue Produkte. Zweitens unterstützen sie die Bewertung von Qualität, Kosten, Energieund Ressourcenverbrauch im Produktionszyklus. Drittens tragen sie zu einer höheren Transparenz in den Prozessen und so zur Optimierung der gesamten Fertigungskette bei.

Die Ergebnisse der LCA-Analysen zeigen, dass trotz des vergleichsweise hohen Energieverbrauchs während des LPBF-Prozesses der ökologische Fußabdruck der additiven Fertigung deutlich kleiner ausfällt als bei konventionellen Produktionsmethoden. Der 3D-Druck eignet sich daher besonders zur Reparatur von Bauteilen, weil er Materialverluste minimiert und Ressourcen schont.

Robust, zuverlässig und geregelt: Das Fraunhofer ILT entwickelt im EU-Projekt ENLIGHTEN ein prozesssicheres Laserauftragschweißen-Verfahren, das den gesamten Prozess überwacht, Anomalien erkennt, behebt und so für gleichbleibend hohe Bauteilqualität sorgt. - © Fraunhofer ILT, Aachen / Ralf Baumgarten
Robust, zuverlässig und geregelt: Das Fraunhofer ILT entwickelt im EU-Projekt ENLIGHTEN ein prozesssicheres Laserauftragschweißen-Verfahren, das den gesamten Prozess überwacht, Anomalien erkennt, behebt und so für gleichbleibend hohe Bauteilqualität sorgt. © Fraunhofer ILT, Aachen / Ralf Baumgarten

Additive Verfahren stehen auch im Mittelpunkt des im November 2022 gestarteten EUProjekts ENLIGHTEN (European iNitiative for Low cost, Innovative & Green High Thrust ENgine Projekt), das die Ariane-Gruppe steuert und koordiniert. 18 Partner aus acht europäischen Ländern haben seit dem Projektstart ein Ziel: Die Entwicklung kostengünstiger und umweltfreundlicher Raketenantriebe, die unter anderem mit Bio- Methan und grünem Wasserstoff arbeiten. Die neuen Öko-Triebwerke sollen die nächste Generation europäischer wiederverwendbarer Raketen antreiben und so Europas Wettbewerbsfähigkeit im globalen Raumfahrtsektor stärken.

Mit LMD schneller und kostengünstiger ins All

Hier kommt das Aachener Institut ins Spiel. Fachleute der Gruppe Additive Fertigung und Reparatur LMD entwickeln im Rahmen des Projekts einen Prozess, um Raketenkomponenten mit Laserauftragschweißen (Laser Material Deposition, LMD) effizienter und präziser herzustellen. „Das Besondere ist, dass wir durch LMD die Geschwindigkeit und Wirtschaftlichkeit bei der Herstellung neuartiger Raketendüsen drastisch verbessern“, erklärt Min-Uh Ko, Gruppenleiter Additive Fertigung und Reparatur LMD am Fraunhofer ILT.

„Das untersuchte Design verfügt – abgesehen von seinem großen Bauraum – über außergewöhnlich filigrane und dünnwandige Kühlkanäle, die mit konventionellen Fertigungsrouten nur unter großem Aufwand realisiert werden können.“ Das Ziel bis zum Projektende im Oktober 2025: LMDFertigung einer Düse für den Einsatz in der nächsten Raketengeneration im Ariane- Programm und Aufbau eines maßstabsgetreuen Demonstrators.

Gegen koventionelle Methoden spricht der bisher übliche Prozess: Weil kein Unternehmen alle unterschiedlichen Prozessschritte in einer lokalen Produktion anbieten kann, müssen die Bauteile zu mehreren Standorten transportiert werden. Die dadurch entstehende Prozesskette führt zu einer zeit- und kostenaufwändigen Produktion, die oft mehrere Monate dauert. Jochen Kittel, Projektleiter des ENLIGHTENVorhabens am Fraunhofer ILT: „Mit unserer Prozesstechnologie, die viele einzelne Prozessschritte einspart, gelingt uns nicht nur eine deutliche Kostenreduktion. Zeitgleich verkürzen wir die Produktionszeit einer Raketendüse deutlich.“

Den Prozess ganzheitlich im Griff

Die Fachleute gehen das Projekt ganzheitlich an: Bis zum Projektende soll ein prozesssicheres, geregeltes Herstellverfahren inklusive Qualitätssicherung für die Serienfertigung entstehen. Ein Inline-System soll mit Sensorik den gesamten Prozess überwachen, Prozess-Anomalien erfassen, beheben und für konstant hohe Bauteilqualität sorgen. Min-Uh Ko: „Wenn wir das Verfahren und den Demonstrator erfolgreich entwickelt haben, markiert das einen Durchbruch. Mit unseren Ergebnissen können wir die Industrie dazu befähigen, als Zulieferer für die Luft- und Raumfahrtindustrie künftig auf ihren eigenen Anlagen via LMD ebenso große, komplexe und filigrane Strukturen herzustellen.“

formnext 2024

Besuchen Sie die Expertinnen und Experten des Fraunhofer ILT vom 19. bis 22. November in Frankfurt am Main am Fraunhofer- Gemeinschaftstand D31 in Halle 11, und erfahren Sie mehr über die Möglichkeiten von AM.

(Quelle: Presseinformation des Fraunhofer-Instituts für Lasertechnik ILT)  

Schlagworte

3D-DruckAdditive FertigungCO₂-FußabdruckLaser Powder Bed FusionLaserauftragschweißenLeichtbauLMDLuftfahrtRaumfahrt

Verwandte Artikel

Übergabe der arc405 für den 3D-Metalldruck großer Bauteile an die TU Dortmund. (v.l.) Janis Blattner (GEFERTEC), Manuel Pinho Ferreira (TU Dortmund), Karsten Steuer (GEFERTEC).
25.10.2024

Eine arc405 von GEFERTEC für Forschungsprojekte

Additive Fertigung Automation Automatisierung Maschinenbau Titan WAAM Werkstofftechnik Wire Arc Additive Manufacturing
Mehr erfahren
Dr. Tim Lantzsch (links) vom Fraunhofer ILT und Dr. Stefan Leuders (rechts) von voestalpine diskutieren über die aktuellen Trends im metallischen 3D-Druck, die das Potenzial haben, die industrielle Produktion nachhaltig zu verändern.
24.10.2024

Additive Fertigung im technologischen Wandel

Dr. Stefan Leuders (voestalpine Additive Manufacturing Center GmbH), und Dr. Tim Lantzsch, (Fraunhofer ILT) diskutieren über die aktuellen Trends der Additiven Fertigung.

Additive Fertigung Automobilindustrie Laser Powder Bed Fusion Luftfahrt Maschinenbau Metallischer 3D-Druck Metallverarbeitung Nachhaltigkeit Prozesssicherheit Raumfahrt
Mehr erfahren
Julianna Posey beim Vorbereiten der Stahlproben für ihre Untersuchung. Die US-Amerikanerin ist für ihre Promotion an der Hochschule Osnabrück nach Deutschland gekommen
20.10.2024

Untersuchungen über die Schweißbarkeit von additiv gefertigtem und gegossenem Stahl

Julianna Posey untersucht Schweißverbindungen aus gegossenem und additiv gefertigtem Stahl. Im Fokus stehen die Ermüdungserscheinungen des gedruckten Stahls nach dem Schw...

3D-Druck Additive Fertigung Luftfahrt Medizintechnik Schweißbarkeit Stähle
Mehr erfahren
Additiver Aufbau des Rohrabzweigs mit Schweißlagen, Schweißlabor Fronius International, Thalheim, Österreich.
18.10.2024

Musterqualifizierung eines additiv gefertigten Druckbehälters

Linde Engineering, MIGAL.CO, TÜV SÜD Industrie Service GmbH und Fronius International möchten der drahtbasierten Fertigungsvariante im lichtbogenbasierten Metall-3D-Druc...

Additive Fertigung Anlagenbau CMT-Schweißprozess Cold-Metal-Transfer-Schweißprozess DIN/TS 17026 Druckbehälter Flugzeugbau Leichtbau Metall-3D-Druck Metallischer 3D-Druck Musterqualifizierung Werkzeugbau
Mehr erfahren
Gedruckte Zahnkronen.
17.10.2024

Anti-Aging-Pulver für die Additive Fertigung

Deloro Wear Solutions präsentiert auf der formnext sein Portfolio im Bereich der Additiven Fertigung. Im Mittelpunkt steht der Einsatz von Stellite-Legierungen auf Kobalt...

3D-Druck Additive Fertigung AM Selective Laser Melting SLM Verschleiß Verschleißschutz
Mehr erfahren