Produkte
© pixabay.com/korhjc0
03.07.2021

Neuer Machine Learning-Ansatz für Beschaffung und Produktion

Neuer Machine Learning-Ansatz für Beschaffung und Produktion

Durchschnittlich bis zu 70 Prozent genauere Prognosen von Liefer- und Wiederbeschaffungszeiten bietet der neue Machine Learning (ML) Ansatz des Aachener Softwareentwicklers INFORM. Die Lösung wurde entwickelt, nachdem Kundenumfragen einen signifikanten Einfluss ungenauer Liefertermine bestellter Ware auf Beschaffungskosten, Sicherheitsbestände und die Termintreue ergeben hatten. Sie ist von nun an für produzierende und für Handelsunternehmen verfügbar.

Die Diskrepanz zwischen dem von Lieferanten zugesicherten und dem tatsächlichen Liefertermin ist in vielen Branchen außerordentlich groß. „Wir haben die Datenhistorie vieler Unternehmen analysiert. In zwei Drittel der Fälle wurde der Termin nicht eingehalten“, berichtet Dr. Marco Schmitz, der im Team „New Solutions“ bei INFORM an der ML-Lösung mitgewirkt hat. Ebenso sind in ERP-Systemen meist nur ungenaue Schätzungen der Wiederbeschaffungszeiten als Stammdaten hinterlegt, deren Pflege manuell nur mit hohem Aufwand vonstattengeht.

In ersten Studien konnte der Algorithmus die Abweichung des Liefertermins von 25 Tagen auf 12 Tage reduzieren. „Das schmälert die Unsicherheit und das Risiko so stark, dass deutlich weniger Deckungskäufe nötig sind“, sagt Schmitz. Solche Deckungskäufe bei Plan-B-Lieferanten oder Konkurrenzunternehmen kosten nicht selten mehrere Millionen Euro pro Jahr und schmälern vor allem in Handelsunternehmen die Margen. Sinkt die Unsicherheit, reduzieren sich gleichzeitig auch diese Kosten. Mit der neuen ML-Lösung will INFORM in Zusammenarbeit mit den hauseigenen Datenspezialisten des INFORM DataLab hier Abhilfe schaffen. Sie ist sowohl als unabhängiges Modul für beliebige ERP-Systeme verfügbar als auch integriert in bestehende Systeme zur Bestandsoptimierung (ADD*ONE) und Produktionsplanung (FELIOS).

Erste Pilotkunden zeigen sich zufrieden mit der neuen Anwendung. So ist es beispielsweise dem zur Firmengruppe Liebherr gehörenden Unternehmen Liebherr-Aerospace Lindenberg GmbH gelungen, Wiederbeschaffungszeiten von Bauteilen viel genauer zu prognostizieren, Lieferverzögerungen zu verringern und unnötige Bestände zu senken.

Die Mehrkosten durch teure Zukäufe sinken, wenn ein Unternehmen Wiederbeschaffungszeiten präziser prognostizieren kann. - © INFORM GmbH
Die Mehrkosten durch teure Zukäufe sinken, wenn ein Unternehmen Wiederbeschaffungszeiten präziser prognostizieren kann. © INFORM GmbH
Liefer- und Wiederbeschaffungszeiten häufig unterschätzt

Unabhängig davon, ob Ware früher oder später als geplant angeliefert wird, führen unsichere Liefer- und Wiederbeschaffungszeiten zu jährlichen Zusatzkosten, oft im siebenstelligen Bereich. Zu früh ankommende Ware sorgt für Überbestände im Lager, die Fläche und Kapital binden. Zu spät gelieferte Ware stört nahezu alle nachgelagerten Prozesse und gefährdet die Lieferfähigkeit.

Untersuchungen von INFORM haben ergeben, dass Unternehmen für Artikel, die regelmäßig nur eine Woche früher oder später ankommen als vom Lieferanten angegeben und geplant, bereits einen 5,5 mal größeren Sicherheitsbestand vorhalten müssen als für Artikel, deren Wiederbeschaffungszeit sicher bekannt ist. Darüber hinaus behindert eine ungenaue Materiaplanung die optimale Auslastung von Maschinen und die eigene Termintreue, da Produktionsprozesse bei fehlender Ware verschoben werden müssen.

Eine detaillierte Vorstellung des neuen ML-Ansatzes und seiner Anwendungsmöglichkeiten sind im kostenfreien Whitepaper „Unsicherheit als Kostentreiber in der Bedarfsdeckung – Mit Machine Learning zu verlässlichen Lieferzeiten“ verfügbar.

(Quelle: Presseinformation der INFORM GmbH)

Schlagworte

FertigungHandelProduktionSoftware

Verwandte Artikel

27.03.2025

ABB ranked second top Swiss company for patent applications

With 540 patent applications, ABB has secured second place among Swiss companies in the European Patent Office’s (EPO) Patent Index 2024, jumping from fourth place in 202...

AM Applications Artificial Intelligence Cutting Engineering EU Industrie KI Software Sustainability Technologie Technology
Read more
25.03.2025

Mit Sammelbetriebsanweisungen Gefahrstoffe einfacher managen

Betriebsanweisungen müssen erstellt und aktualisiert werden. Eine Software unterstützt Verantwortliche im Arbeitsschutz und gewährleistet sicheres und rechtskonformes Arb...

Arbeitsschutz Betriebsanweisungen Gefahrstoffe Gefahrstoffverordnung Schutz Sicherheit Software Umwelt Unternehmen Unterweisungen
Mehr erfahren
24.03.2025

Introducing TotalCare From Dickson

The Dickson Company, a leader in environmental monitoring solutions, is pleased to announce the launch of TotalCare and TotalCare Plus, a new 24/7 global support program...

AM AR Compliance DED IT Support Monitoring Solutions Software
Read more
19.03.2025

Die wirtschaftliche Lage in Deutschland im März 2025

Die wirtschaftliche Lage ist zu Jahresbeginn 2025 weiterhin geprägt von hohen innen- und außenpolitischen Ungewissheiten.

Arbeitsmarkt Bau Bildung Dienstleistungen Energie Energiepreise Entwicklung Handel Industrie Inflation Insolvenz Klimaschutz Konjunktur Produktion Regierung Stabilisierung Wirtschaft
Mehr erfahren
19.03.2025

New fields of application for flexible OCT edge tracking

Blackbird Robotersysteme GmbH, manufacturer of system solutions for remote laser welding, has significantly advanced its award-winning solution for OCT edge tracking.

AI AM Automation KI Laser Laser Welding OCT Robot Roboter Robotersysteme Software Welding
Read more