Forschung
Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. - © wbk, KIT
29.11.2023

Rückgewinnen statt schreddern: Batterien effizienter recyceln

Rückgewinnen statt schreddern: Batterien effizienter recyceln

Forschende des KIT entwickeln mit der Industrie einen nachhaltigeren Recyclingprozess, um Materialien aus Lithium-Ionen-Batterien wirksamer wiederzuverwerten.

Der Markt für E-Autos wächst rapide und damit der Bedarf an Lithium-Ionen-Batterien (LIB). Auch deren Recycling ist ein wichtiger Baustein im Produktionskreislauf. Aktuelle Verfahren zerlegen die aktiven Batteriematerialien in ihre molekularen Bestandteile – unter hohem Energie- und Chemikalieneinsatz. In einem groß angelegten Verbundprojekt entwickeln daher Forschende des Karlsruher Instituts für Technologie (KIT) und Partner aus Industrieunternehmen eine vollständige Prozesskette, um gebrauchte Batterien effizienter zu verwerten, in dem sie die aktiven Komponenten funktionserhaltend zurückgewinnen. Das Bundesforschungsministerium fördert das Projekt mit knapp drei Millionen Euro.

Die Elektrifizierung der Mobilität ist ein wichtiger Beitrag, um Deutschlands Klimaschutzziele zu erreichen, und sie stellt dadurch einen Megatrend für die Autoindustrie in Deutschland dar. „Der damit verbundene hohe Bedarf an Lithium-Ionen-Batterien erfordert nachhaltige und geschlossene Materialkreisläufe – von den Batteriematerialien über den gesamten Lebenszyklus bis zum Recycling – sowie eine kreislauffähige Produktion von Batteriezellen“, so Dr. Marco Gleiß vom Institut für Mechanische Verfahrenstechnik und Mechanik, der das Verbundprojekt „Agile Prozesskette zum direkten Recycling von Lithium-Ionen-Batterien und Regeneration der Aktivmaterialien“ (DiRecReg) auf Seiten des KIT koordiniert. „Indem wir die Wertschöpfungskette schließen, können wir gleichzeitig die Rohstoffabhängigkeit Deutschlands und der Europäischen Union reduzieren“, so Gleiß.

Erhalten statt zerkleinern oder zersetzen

Aktuelle Verfahren zerkleinern die Batteriezellen und lösen die Aktivmaterialien bis auf die Molekülebene auf, um diese später in Form von Metallsalzen aus der Flüssigkeit zu gewinnen. Zwar können so bis zu 90 Prozent der kritischen Elemente, etwa Kobalt, Nickel und Mangan, wiedergewonnen werden, jedoch ist der Bedarf an Energie- und Chemikalien sehr hoch. Aus den gewonnenen Materialien muss zudem unter großem Energieaufwand und Rohstoffeinsatz Batteriematerial komplett neu hergestellt werden. Neuere, vielversprechende Ansätze für Altbatterien und Produktionsausschüsse basieren auf dem direkten Recycling von Aktivmaterialien. „Dabei werden die Aktivmaterialien nicht mehr vollständig aufgelöst. Stattdessen werden sie in die einzelnen Zellbestandteile zerlegt und dann mechanisch getrennt, um sie möglichst rein zurückzugewinnen“, erklärt Gleiß.

Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. - © wbk, KIT
Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. © wbk, KIT
Aktives Rückgewinnen von Batteriematerialien noch in den Kinderschuhen

Bisher hat sich eine solche Prozesskette zum direkten Recycling in der Industrie jedoch nicht durchgesetzt. Noch lässt sich das Materialverhalten des wiedergewonnenen Rezyklats nicht vorhersagen. Außerdem gibt es keine Kriterien und Regeln, um die Einsatzfähigkeit des gealterten Materials zu beurteilen. Darüber hinaus fehlt es derzeit noch an praxisnahen, wirtschaftlichen Lösungen, um die verschiedenen Batteriepacks ohne großen Aufwand bis hin zu den einzelnen Bestandteilen zerlegen zu können. „Diese kritischen Punkte greift unser Verbundvorhaben auf und beschäftigt sich primär mit der Entwicklung einer agilen Prozesskette für das direkte Recycling von Lithium-Ionen-Batterien sowie der Regeneration der so wiedergewonnenen Aktivmaterialien“, so Projektkoordinator Dr. Thomas Dreyer von der Weber Ultrasonics AG. Wichtig sei dabei auch, dass der Prozess variabel auf verschiedene Ausgangsmaterialien der Batterieproduktion wie auch für Produktionsausschüsse zugeschnitten ist und unterschiedliche Batterieformate und Bauarten verarbeiten kann. „Ziel ist es zudem, die energieintensiven Prozessschritte der zurzeit eingesetzten Recycling-Verfahren zu ersetzen und nachhaltig recycelte, hochwertige Sekundärmaterialien im Sinne einer Kreislaufwirtschaft zu liefern“, so Gleiß.

Drei Millionen Euro für Verbundprojekt mit vier Forschungs- und sieben Industriepartnern

Das Projekt DiRecReg hat eine Laufzeit von drei Jahren und wird vom Bundesforschungsministerium mit 2,95 Millionen Euro gefördert. Das Projektkonsortium unter Federführung der Firma Weber Ultrasonics AG besteht aus zehn Partnern sowie einem assoziierten Partner. Es umfasst vier Institute des KIT – wbk Institut für Produktionstechnik, Institut für Mechanische Verfahrenstechnik und Mechanik, Institut für Angewandte Geowissenschaften - Professur für Geochemie & Lagerstättenkunde und die Arbeitsgruppe Thin Film Technology – sowie sechs industrielle Partner: den Batteriezellhersteller PowerCo SE, den Wertstofftechnologie- und Recyclingkonzern Umicore AG & Co. KG, den Experten für Greif- und Handhabungstechnik SCHUNK SE & Co. KG, die Firma FIBRO LÄPPLE TECHNOLOGY GMBH als Anlagenintegrator sowie die Anlagenbauer Carl Padberg Zentrifugenbau GmbH und Weber Ultrasonics AG. Darüber hinaus unterstützt die Firma Siemens aus Steuerungs- und Digitalisierungssicht das Projekt im Rahmen einer assoziierten Partnerschaft.

(Quelle: Presseinformation des KIT – Karlsruher Institut für Technologie)

Schlagworte

BatterieproduktionE-MobilitätKreislaufwirtschaftMobilitätswendeRecycling

Verwandte Artikel

Zusammensetzungen und Eigenschaften präzise, schnell und kostengünstig erfassen, um passende Materialkombinationen in Zukunft zum Beispiel aus Sekundärmaterialien zu finden – ein digitales Ökosystem für eine resiliente und nachhaltige Versorgung mit Funktionswerkstoffen erforscht das Fraunhofer-Leitprojekt ORCHESTER unter Mitwirkung des Fraunhofer IWS.
19.12.2024

Werkstoff- und Prozesslösungen für Herausforderungen bei Rohstoffengpässen

Das Fraunhofer IWS beteiligt sich an einem neuen Fraunhofer-Leitprojekt. Ziel ist es, die Versorgung mit Werkstoffen für die Energiewende zu sichern.

Energiewende Kobalt Lithium Materialengpässe Recycling Rohstoffe Rohstoffmangel Sekundärrohstoffe Seltene Erden Simulation
Mehr erfahren
Mit dem letzten Bauabschnitt, der
03.12.2024

Stahlbau: „Superradwegenetz Tübingen“ fertiggestellt

Nach drei Jahren Bauzeit komplettiert eine 365 Meter lange Radwegbrücke von Schmees & Lühn seit Oktober 2024 das „Blaue Band“ in Tübingen, ein Zusammenschluss mehrerer Ra...

Brückenbau Mobilitätswende S690-Stahl Schweißtechnik Stahlbau
Mehr erfahren
29.11.2024

Deutsche Aluminiumindustrie: Produktionsrückgänge setzen sich fort

Die Lage der deutchen Aluminiumindustrie bleibt angespannt. Im dritten Quartal 2024 ging das Produktionsvolumen in den Betrieben erneut zurück.

Aluminium Aluminiumhalbzeuge Aluminiumindustrie Halbzeuge Recycling Wirtschaftsstandort Deutschland
Mehr erfahren
Das Team von Fill Maschinenbau präsentierte auf der Internationalen Leitmesse für Metallbearbeitung AMB 2024 in Stuttgart mit dem „Next World Project“ die Lösungen für die Fabrik der Zukunft.
02.10.2024

Mit innovativen Lösungen erfolgreich

Mit dem „Next World Project“ präsentierte Fill Maschinenbau auf der AMB 2024 die Lösungen für die Fabrik der Zukunft.

Automobilindustrie Effizienz Flexibilität Gießerei Maschinenbau Metallindustrie Mobilität Mobilitätswende Montagetechnik Wirtschaftlichkeit Zerspanung
Mehr erfahren
26.09.2024

2-stufiges Fügeverfahren auf der Überholspur

Das 2-stufige Schweißverfahren Evo2Step zum Fügen von stoffgleichen Bauteilen ist ressourcenschonend, energieeffizient und vor allem im Bereich der E-Mobilität beliebt.

E-Mobilität Laserdirektschweißen Laserschweißen Laserstrahldirektschweißen Laserstrahlschweißen Schweißtechnik Schweißverfahren
Mehr erfahren