Technologien
Direktfügeverfahren bieten erhebliches Potenzial zur Fertigung von Hybridbauteilen, beispielsweise im Automotive-Sektor. - © stock.adobe.com
10.08.2020

SKZ forscht an neuen Verbindungstechniken für Hybridbauteile

SKZ forscht an neuen Verbindungstechniken für Hybridbauteile

Kunststoffteile und -baugruppen sind über die letzten Jahrzehnte zunehmend komplexer geworden. Das zeigt sich beispielsweise daran, dass immer höhere Anforderungen an die Individualisierbarkeit, die Funktionsintegration oder den Leichtbau gestellt werden. Diese Entwicklungen ziehen sich durch die gesamte Wertschöpfungskette und schließen auch die Fügetechnik mit ein. Längst vorbei sind die Zeiten, in denen mechanische Verbindungselemente, Klebstoffe oder klassische Schweißverfahren die einzigen Möglichkeiten waren, um polymere Bauteile miteinander zu verbinden. Am SKZ widmet sich ein zwölfköpfiges Team aus Ingenieuren, Physikern und Technikern der Erforschung bzw. Weiterentwicklung neuer Fügetechniken. 

„In den letzten Jahren ist sehr viel Bewegung in die Kunststoff-Fügetechnik gekommen. Die Materialsysteme werden durch den vermehrten Hybridbau immer komplexer und damit steigt auch der Bedarf an neuen Verbindungstechniken“, erläutert Dr. Eduard Kraus, Leiter der Forschergruppe „Fügen und Oberflächentechnik“ am Kunststoff-Zentrum SKZ.

Das zwölfköpfige Team am SKZ widmet sich genau diesen Zukunftsthemen – der Erforschung bzw. Weiterentwicklung neuer Fügetechniken. Hierunter fällt beispielsweise das so genannte thermische Direktfügen, bei dem metallische und polymere Werkstoffe durch lokale Erwärmung des metallischen Fügepartners dauerhaft verbunden werden. Konkret stehen aktuell die Themen Oberflächenstrukturierung, effizientere Prozessauslegung oder das Verhalten von faserverstärkten Kunststoffbauteilen während des Direktfügens im Fokus der Forschungsarbeiten.

Direktfügeverfahren bieten erhebliches Potenzial zur Fertigung von Hybridbauteilen, beispielsweise im Automotive-Sektor. - © stock.adobe.com
Direktfügeverfahren bieten erhebliches Potenzial zur Fertigung von Hybridbauteilen, beispielsweise im Automotive-Sektor. © stock.adobe.com

Was auf den ersten Blick sehr komplex und noch vergleichsweise experimentell erscheinen könnte, verliert bei genauer Betrachtung schnell seinen Schrecken. Die Vorteile, die sich durch diese neuartige technologische Entwicklung eröffnen, sind offensichtlich. „Direktfügeprozesse sind prinzipiell sehr gut automatisierbar, ermöglichen mechanisch sehr hochwertige Verbindungen und kommen zudem komplett ohne potenziell alterungsanfälligen Klebstoff aus. Deshalb ist das Direktfügen aktuell besonders im Automotive-Bereich sehr gefragt“, erläutert Kraus.

Bei der strategischen Ausrichtung der Fügeaktivitäten erhält das SKZ kontinuierlich wichtige Rückmeldungen aus Wirtschaft und Forschung: „Durch den regelmäßigen Austausch mit Partnern, unter anderem aus unserem Kunststoff-Netzwerk sowie durch die enge Zusammenarbeit mit weiteren Forschungseinrichtungen, stellen wir sicher, dass wir mit unserer Forschung immer am Puls der Zeit bleiben und die Bedürfnisse der Praxis nie aus den Augen verlieren“, ergänzt Dr. Benjamin Baudrit, Leiter der Bereiche „Fügen und Oberflächentechnik“ und „Produkte und Prozesse“ am SKZ.

„Wir wenden uns an Unternehmen, die ihre eingefahrenen Fügeprozesse optimieren oder auf den Prüfstand stellen möchten. Wer offen für Neuerungen in der Verbindungstechnik ist und einen Blick über den Tellerrand hinaus wagen möchte, ist mit den Füge-Experten des SKZ genau im richtigen Verbund. Wir machen Fügeprozesse ‚fit for future‘.“, schließt Kraus.

(Quelle: Presseinformation des SKZ – Das Kunststoffzentrum)

Schlagworte

FügenFügetechnikHybridbauteileThermisches Direktfügen

Verwandte Artikel

23.06.2024

Call for Papers für die Tagung ROBOTER 2025

Die Tagung ROBOTER 2025 findet am 18. und 19. Februar 2025 in der Schwabenlandhalle in Fellbach statt. Ab sofort können Vorträge für die Veranstaltung eingereicht werden....

Additive Fertigung Automation Cloud Robotics Cobots Cybersicherheit Digitalisierung Energieeffizienz Fügetechnik Handwerk Industrie Industrieroboter KI Kosteneffizienz Robotik Schweißtechnik
Mehr erfahren
Nostalgische Dampflokfahrt ins ungarische Eisenbahnmuseum.
15.06.2024

JoinTrans 2024 setzt neue Maßstäbe in Budapest

Am 8. und 9. Mai 2024 fand die 7. Internationale Tagung zum Fügen im Schienenfahrzeugbau statt. Gemeinsam mit dem ungarischen Verband für Schweißtechnik und Werkstoffprüf...

Fügetechnik Schienenfahrzeugbau Schweißtechnik
Mehr erfahren
05.06.2024

Neuer medienbeständiger Epoxid-Klebstoff für Filterverklebungen

Panacol hat speziell für das Verkleben von Filtern den Epoxidharzklebstoff Structalit 5826 VT entwickelt. Er eignet sich insbesondere unter anderem für Filter im Schiffs-...

Abgasreinigung Epoxidharzklebstoff Erneuerbare Energien Fügetechnik Gasfilter Klebstoffe Klebtechnik Motorenbau Ölfilter Partikelfilter Schiffsbau
Mehr erfahren
Im Rahmenprogramm „Large Passenger Aircraft“ (LPA) gelang es dem Fraunhofer IWS innerhalb des MFFD-Projekts erstmals weltweit unter Einsatz einer CO2-Laserstrahlquelle das Schweißen langer Verbindungsnähte an großvolumigen thermoplastischen Flugzeugfaserverbundstrukturen zu demonstrieren.
31.05.2024

Lasertechnologie für ein leichteres Fliegen der Zukunft

Auf dem Weg in Richtung neuer ökologischer Flugzeugbaukonzepte erbrachten Forscher den Nachweis zum spanlosen Fügen von kohlenstofffaserverstärkten Bauteilstrukturen aus...

Faserverbunde Faserverbundtechnik Flugzeugstrukturen Fügetechnik Klaebtechnik Lasersystemtechnik Lasertechnologien Leichtbau Schweißtechnik Thermoplaste
Mehr erfahren
Manuelles Abschälen eines laminierten Passelements des Typs Laminum® von MARTIN.
14.05.2024

Blechbearbeitung: Noch mehr Flexibilität in der Serienfertigung

Mit großer Konsequenz treibt MARTIN die Optimierung der Prozesse seiner Blechbearbeitung voran. Jüngster Wurf ist die Investition in eine neue Laseranlage, die die Liefer...

Baugruppen Blechbearbeitung Fügetechnik Lasertechnologien Metallbleche Stahlbleche Trenntechnik Umformtechnik Zulieferindustrie
Mehr erfahren