Forschung
© Steelwind Nordenham
06.05.2021

Stahl schweißen: Forschungsprojekt für Offshore-Windparks

Stahl schweißen: Forschungsprojekt für Offshore-Windparks

Bei rund zehn Megawatt Leistung haben Windkraftanlagen auf offener See heute gewaltige Dimensionen. Ihr gigantisches Maschinenhaus mit Generator, Rotor und über hundert Meter langen Rotorblättern steht auf einem Stahlturm. Dieser wiederum ruht im Meer auf kolossalen Stahlrohren, den sogenannten Monopiles, mit aktuell bis zu zehn Metern Durchmesser und 1.500 Tonnen Gewicht. Damit diese für viele Jahre den Stürmen, Wellen und aggressivem Salzwasser trotzen und dennoch wirtschaftlich hergestellt werden können, wollen Materialforscher der Universität des Saarlandes und Maschinenbauer der RWTH Aachen gemeinsam mit dem Stahlspezialisten Dillinger und weiteren Firmen maßgeschneiderte neue Stahlsorten entwickeln. Das Forschungsprojekt wird vom Bundeswirtschaftsministerium mit 1,2 Millionen Euro gefördert.

Um die riesigen Stahlrohre für Offshore-Windparks anzufertigen, werden Grobbleche benötigt, wie sie das Stahlunternehmen Dillinger im Saarland herstellt. Die Bleche mit einer Wandstärke von etwa zehn Zentimetern werden zu Rohrstücken mit Durchmessern von bis zu zehn Metern zusammengeschweißt und dann bis zu einer Länge von über 80 Metern Stück für Stück durch weitere Schweißnähte miteinander verbunden. „Der Knackpunkt bei diesem Verfahren ist die enorme Hitze, die kurzzeitig an der Schweißnaht auf den Stahl einwirkt und das innere Gefüge des Materials verändert. Je dicker die Grobbleche sind und je schneller sie unter Produktionsbedingungen verschweißt werden, umso drastischer können Abweichungen im Gefüge rund um die Schweißnähte sein“, erklärt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes.

Der Materialforscher hat mit seinem Team spezielle Analysetechniken entwickelt, mit denen man alle Veränderungen dieser inneren Struktur von Materialien quantitativ darstellen kann. Dafür setzt der Wissenschaftler hochauflösende Elektronen- und Ionenmikroskope bis hin zur Nano-Tomographie und Atomsonden-Tomographie ein. Die dabei erfassten Informationen und Bildserien auf verschiedenen Größenskalen werden anschließend im Computer wieder zum exakten räumlichen Abbild des Stahlgefüges zusammengefügt – bis hin zum einzelnen Atom. „Wir erkennen dadurch auf der Mikro- und Nanoebene sowie der atomaren Skala, an welcher Stellschraube man drehen muss, um einen Werkstoff so zu verändern, dass er die gewünschten Eigenschaften erhält“, erläutert Frank Mücklich, der auch das Steinbeis-Forschungszentrum für Werkstofftechnik auf dem Saarbrücker Uni-Campus leitet.

Bis zu 10 Metern Durchmesser und 1.500 Tonnen Gewicht: Wissenschaftler und Dillinger wollen gemeinsam maßgeschneiderte neue Stahlsorten für die riesigen Monopiles entwickeln und damit zur Senkung von Baukosten von Offshore-Windanlagen beitragen. - © Steelwind Nordenham
Bis zu 10 Metern Durchmesser und 1.500 Tonnen Gewicht: Wissenschaftler und Dillinger wollen gemeinsam maßgeschneiderte neue Stahlsorten für die riesigen Monopiles entwickeln und damit zur Senkung von Baukosten von Offshore-Windanlagen beitragen. © Steelwind Nordenham

Gemeinsam mit den Monopile-Produzenten EEW Special Pipe Constructions, Sif Group und dem Schweißzusatz- und Stromquellenhersteller Lincoln Electric arbeiten die Projektpartner nun daran, den Stahl der Grobbleche für die Schweißverfahren beim Bau von Offshore-Windkraftanlagen weiter zu optimieren.

„Dillinger hat in den letzten Jahren zukunftsweisende Investitionen getätigt und Innovationen vorangetrieben, um die Bleche für den anspruchsvollen Monopile-Markt weiter zu entwickeln“, erläutert der promovierte Materialwissenschaftler und Schweißfachingenieur Sebastian Scholl von Dillinger. Damit habe Dillinger bereits deutlich die Produktivität steigern können und zu einer Senkung von Baukosten für Offshore Windanlagen beigetragen. Hierbei sei wichtig, so Scholl, auch die Effizienz der Weiterverarbeitung, also die maximal ertragbare Schweißgeschwindigkeit der Stahlgüten von Dillinger weiter zu erhöhen. Dabei spielen moderne Schweißverfahren für Grobbleche, etwa das Mehrdraht-Unterpulverschweißen oder das Elektronenstrahlschweißen, eine zentrale Rolle.

„Der nächste wichtige Schritt wird sein, die Fertigungszeit zu reduzieren. Dies kann durch Hochleistungsschweißverfahren erreicht werden. Gemeinsam mit unseren Partnern wollen wir daher in diesem Forschungsprojekt einen Stahl entwickeln, der diese hohen Anforderungen erfüllt“, sagt Scholl. Diesem stimmt Professor Uwe Reisgen, Leiter des RWTH-Instituts für Schweißtechnik und Fügetechnik, zu: „Solch enorme Stahlkonstruktionen sind ohne Schweißtechnik völlig undenkbar. Wir brauchen für die riesigen Stückzahlen sowohl hocheffiziente Schweißverfahren als auch maßgeschneiderte Werkstoffe. Sie müssen sich mit den Hochleistungsschweißverfahren ohne Verlust ihrer mechanisch-technologischen Eigenschaften gut verarbeiten lassen. Ich bin sehr erfreut, dass ein hochkompetentes Stahlunternehmen wie Dillinger diesen Weg gemeinsam mit uns beschreiten möchte.“

Im Rahmen des Energieforschungsprogramms „Innovationen für die Energiewende“ fördert das Bundeswirtschaftsministerium das Verbundprojekt mit 1,2 Millionen Euro. Insgesamt hat das Forschungsprojekt ein Finanzvolumen von mehr als 1,9 Millionen Euro. „Wir wollen damit nicht nur dazu beitragen, dass die erneuerbaren Energien weiter ausgebaut werden, sondern auch, dass Produktionsstandorte in Deutschland und Europa gesichert werden“, erläutert Materialforscher Frank Mücklich.

(Quelle: Presseinformation der Dillinger AG)

Schlagworte

BlecheElektronenstrahlschweißenFügetechnikMehrdraht-UnterpulverschweißenOffshore-WindenergieSchweißenSchweißtechnikStahl

Verwandte Artikel

Die RIEXINGER Akku-Range: HGV 100 A, HG 90 A und MSG 40 A.
16.05.2024

CAS Akku-Handschweißgeräte und patentierte Weltneuheit

Die Eugen Riexinger GmbH & Co. KG schließt sich der weltweit größten Multi-Marken-Akku-Allianz CAS an und bringt zum Start gleich drei innovative Geräte auf den Markt: d...

Handschweißgeräte Kunststoffbearbeitung Muffenschweißgeräte Schweißtechnik Stumpfschweißgeräte
Mehr erfahren
Dünnblechschweißen mit der TPS 320i
16.05.2024

Herausforderung Dünnblechschweißen im Maschinenbau

„It works“ lautet das Credo der Knoll Maschinenbau GmbH, in der heute über 1.100 Mitarbeiter fortschrittliche Industrieanlagen fertigen. Geschweißt wird mit der TPS 320i...

Automobilindustrie Cobots Cobotschweißen Dünnbleche Dünnblechschweißen Energietechnik Fachkräftemangel Luftfahrt Maschinenbau Medizintechnik Metallbearbeitung Metallindustrie Pulsschweißen Raumfahrt Roboterschweißen Robotik Schweißtechnik
Mehr erfahren
Manuelles Abschälen eines laminierten Passelements des Typs Laminum® von MARTIN.
14.05.2024

Noch mehr Flexibilität in der Serienfertigung

Mit großer Konsequenz treibt MARTIN die Optimierung der Prozesse seiner Blechbearbeitung voran. Jüngster Wurf ist die Investition in eine neue Laseranlage, die die Liefer...

Baugruppen Blechbearbeitung Fügetechnik Lasertechnologien Metallbleche Stahlbleche Trenntechnik Umformtechnik Zulieferindustrie
Mehr erfahren
„thyssenkrupp Materials Processing Europe trifft Vereinbarung mit Autoliv über Bezug von Stahl aus CO2-armer Herstellung ab 2026“: thyssenkrupp Materials Processing Europe und Autoliv haben im April Verträge zur Lieferung von CO2-reduziertem Stahl unterzeichnet. Auf dem Bild zu sehen (v. l. n. r.): Burkhard Sich, Head of Sales bei thyssenkrupp Materials Processing Europe; Cosmin Bakai, Global Director Raw Material, Steel bei Autoliv; Wilhelm Budéus, Mitglied der Geschäftsführung und Leiter der Niederlassung Krefeld bei thyssenkrupp Materials Processing Europe; Christian Swahn, Executive Vice President, Global Supply Chain bei Autoliv.
13.05.2024

Vereinbarung über Bezug von Stahl aus CO₂-armer Herstellung

thyssenkrupp Materials Processing Europe und Autoliv haben sich darauf geeinigt, ihre bestehende Zusammenarbeit für die Lieferung von Stahl auf CO₂-armen Stahl auszuweite...

Aluminium AM Automobilindustrie Edelstahl Emissionen Fertigung Gase Herstellung Metalle Metallerzeugnisse MINT Nachhaltigkeit Photovoltaik PPE Produktion Sicherheit Stahl Stahlherstellung Stahlindustrie Stahlverarbeitung Supply Chain Treibhausgase Verarbeitung Vorfertigung Werkstoffe
Mehr erfahren
12.05.2024

Silofahrzeuge, Roboterprogrammierung und Nanopflaster: Das war die 21. Tagung Schweißen

Zwei vielseitige und inspirierende Tage liegen hinter der SLV Nord: die 21. Tagung „Schweißen in der maritimen Technik und im Ingenieurbau“ am 24./25. April 2024.

Aluminium AM Bau Blech Bleche Demontage Diodenlaser Druckbehälterbau Emissionen Energie Energieanlagen Energieeffizienz Entwicklung ERP Fertigung Festigkeit Fortbildung Führung Haften Hersteller Herstellung Ingenieurbau Konstruktion Korrosion Kunststoffe Kunststoffrohre Laserstrahl Lichtbogen MAG Schweißen Maritime Technik Materialforschung MES Metall MIG Schweißen Montage Nanostruktur Offline-Programmierung Plasma Polypropylen PPE Produktion Prozesse Pulver Richten Roboter Roboteranlagen Roboterprogrammierung Rohre Schiffbau Schmelzbad Schmelze Schweißen Schweißtechnik Sicherung Stahl Thermisches Richten Transport Verzug Windenergie Windenergieanlagen Wissenschaft
Mehr erfahren