Trending Topic Research
Die neue additive Fertigungsanlage des Fraunhofer IWS wird aus metallischen Pulvern wie Aluminium, Titan oder Kupfer schichtweise besonders große Bauteile mit komplexer Geometrie erzeugen: zum Beispiel Brennkammern für Wasserstoff-Energiesysteme, Schaufelradeinhausungen für Turbinen und andere komplexe Maschinen-Komponenten oder Werkzeuge. - © Christoph Wilsnack/Fraunhofer IWS
02.11.2023

Fraunhofer IWS installiert europaweit einzigartigen Industrie-3D-Drucker

Fraunhofer IWS installiert europaweit einzigartigen Industrie-3D-Drucker

Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden installiert einen europaweit einzigartigen industriellen 3D-Drucker. Die additive Fertigungsanlage des Herstellers Farsoon basiert auf dem selektiven Laserstrahlschmelzen im Pulverbett. Sie kann aus Aluminium, Titan, Nickel, Eisen, Kupfer und anderen metallischen Pulvern schichtweise besonders große Bauteile mit komplexer Geometrie erzeugen.

Die Wissenschaftlerinnen und Wissenschaftler des Fraunhofer IWS richten ihre Forschungs- und Entwicklungsarbeiten mit der Fertigungsanlage auf komplexe, großvolumige Bauteile wie beispielsweise Brennkammern für Wasserstoff- Energiesysteme, Schaufelradeinhausungen für Turbinen und andere komplexe Maschinen-Komponenten oder Werkzeuge. Gemeinsam mit der Brandenburgischen Technischen Universität Cottbus-Senftenberg (BTU) planen sie im Verbundvorhaben „SpreeTec neXt“ unter anderem in der Lausitz neue Fertigungsprozesse und Wertschöpfungsketten für die Zeit „nach der Kohle“ zu etablieren. Auch neue Geschäftsmodelle für die Reparatur schwer verfügbarer landwirtschaftlicher, energietechnischer oder industrieller Ersatzteile sind damit absehbar.

Alleinstellungsmerkmale für den regionalen Mittelstand

„Mit solcher Anlagentechnik kann sich der ostdeutsche Mittelstand mit Hilfe des Fraunhofer IWS besondere Alleinstellungsmerkmale erarbeiten“, betont Institutsleiter Prof. Christoph Leyens. „Vor allem in der Transformationsregion Lausitz geben Projekte wie „SpreeTec neXt“ der regionalen Wirtschaft neue Impulse.“ Zwar verfügen inzwischen bereits einige Betriebe über 3D-Drucker. Doch diese Geräte sind in ihren Fähigkeiten meist limitiert: Sie sind beispielsweise lediglich auf Kunststoff-Prototypen spezialisiert, können nur vergleichsweise kleine metallische Komponenten erzeugen oder zwar große, aber dafür eher weniger komplex geformte Bauteile mit anderen Fertigungsverfahren wie dem Auftragschweißen. Moderne 3D-Drucker wie die am Fraunhofer IWS mischen indes die Karten neu: Die neue AM-Anlage kann Bauteile generieren, die bis zu 62 mal 62 mal 110 Zentimeter messen.

Filigrane und komplexe Strukturen schließen sich in Zukunft auch bei Großbauteilen nicht aus – zum Beispiel beim Aerospike-Raketentriebwerk, das die Forschenden mit dem Institut für Luft- und Raumfahrttechnik der Technischen Universität Dresden im Rahmen des ESA-Projekts ASPIRER (General Support Technology Program Nr. 4000130551/20/NL/MG) entwickeln. - © Christoph Wilsnack/Fraunhofer IWS
Filigrane und komplexe Strukturen schließen sich in Zukunft auch bei Großbauteilen nicht aus – zum Beispiel beim Aerospike-Raketentriebwerk, das die Forschenden mit dem Institut für Luft- und Raumfahrttechnik der Technischen Universität Dresden im Rahmen des ESA-Projekts ASPIRER (General Support Technology Program Nr. 4000130551/20/NL/MG) entwickeln. © Christoph Wilsnack/Fraunhofer IWS

„Damit bietet diese Anlage ganz neue Möglichkeiten, selbst sehr große Bauteile mit komplexer Geometrie in hoher Qualität additiv zu fertigen“, erklärt Dr. Lukas Stepien, der am Fraunhofer IWS die Gruppe für Pulverbettverfahren und Drucken leitet. „Damit eröffnet sie Einsatzchancen für den industriellen 3D-Druck in noch mehr Branchen und Anwendungen.“

Vorstellbar ist beispielsweise ein dezentrales Additive Manufacturing (AM) dort, wo permanent neue Komponenten und Werkzeuge für kleine Losgrößen gebraucht werden oder Ersatzkomponenten nur schwer zu beschaffen sind. Interessant ist das unter anderem für den Automobilbau, die Luft- und Raumfahrt, die Energieanlagenwirtschaft und den Werkzeugbau.  Derartige AM-Großanlagen können künftig auch die schnelle Ersatzteilbeschaffung für hochwertige Landmaschinen im Agrarsektor erleichtern.

Neues Innovationszentrum soll auch regionalen Strukturwandel stärken

Im Zuge von „SpreeTec neXt“ wollen die Projektpartner bis 2029 in der Lausitz ein Innovationszentrum etablieren, das den regionalen Strukturwandel stärkt. Dafür arbeiten BTU und Fraunhofer in der Additiven Fertigung zusammen. Das Fraunhofer IWS bringt hier seine besondere Expertise in der Additiven Fertigung, der Prozessentwicklung sowie der Werkstoff- und Bauteilanalytik ein. Die BTU widmet sich vor allem der Grundlagenforschung für die AM-Prozesse. Geplant ist, in der Lausitz dauerhaft ein gemeinsames Labor von Fraunhofer und BTU einzurichten, um eine nachhaltige wirtschaftliche Entwicklung zu unterstützen. Das Team soll dann kleine und mittelständische Unternehmen aus der Transformationsregion beim Einsatz fortgeschrittener Technologien rund um die additive Fertigung beraten, Beschäftigte solcher Betriebe weiterbilden und das Wachstum eines AM-Clusters in der Lausitz unterstützen. Das Bundesministerium für Bildung und Forschung (BMBF) wird diese konkreten Teilaufgaben von „SpreeTec neXt“ mit je fünf Millionen Euro fördern.

Temperaturbeständigkeit ist auch für große Bauteile eine entscheidende Voraussetzung. So müssen sich resistente Materialien auch für die additive Fertigung von Brennkammern realisieren lassen (Bauteil im Bild entwickelt mit TU Dresden und ESA). - © Christoph Wilsnack/Fraunhofer IWS
Temperaturbeständigkeit ist auch für große Bauteile eine entscheidende Voraussetzung. So müssen sich resistente Materialien auch für die additive Fertigung von Brennkammern realisieren lassen (Bauteil im Bild entwickelt mit TU Dresden und ESA). © Christoph Wilsnack/Fraunhofer IWS

Erste Einblicke in die daraus erwachsenden Möglichkeiten geben das Fraunhofer IWS und der Partner Farsoon auf der internationalen Fertigungsmesse formnext vom 7. bis 10. November 2023 in Frankfurt am Main.

Wie funktioniert die Additive Fertigung im Pulverbett?

Bei der laserbasierten Additiven Fertigung im Pulverbett schmilzt ein Laserstrahl in einer Gasumgebung feine Metallteilchen auf. Aus dieser Schmelze erzeugt die Anlage nach einem Computermodell Schicht für Schicht das gewünschte Bauteil. So lassen sich Komponenten aus Titan, Kupfer und anderen Metallen beziehungsweise aus deren Legierungen generieren.

Was ist SpreeTec neXt?

Das Verbundvorhaben „Neue Fertigungstechnologien für Komponenten und Systeme der dezentralen Energietechnik“ (SpreeTec neXt) zielt darauf, neue ressourcensparende Fertigungstechnologien für Komponenten und Systeme in der Energieerzeugung, -wandlung und -speicherung zur Praxisreife zu führen. Das können beispielsweise wasserstoffbetriebene Turbinen und Brennstoffzellen, Wärmetauscher oder hybride Photovoltaik- und Solarthermieanlagen sein. Auch neue Werkstoffe, Digitalisierungsansätze und Kreislauf-Prinzipien für diese Anwendungen stehen auf der Projektagenda.

Die Federführung hat die Brandenburgische Technische Universität Cottbus-Senftenberg (BTU) übernommen. Als Partner sind das Fraunhofer-Institut für Angewandte Polymerforschung IAP aus Potsdam und das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS aus Dresden dabei. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das auf sieben Jahre angelegte Vorgaben mit 52,44 Millionen Euro.

(Quelle: Presseinformation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS)

Schlagworte

3D-DruckAdditive FertigungAluminiumAMEisenKupferLaserstrahlschmelzenMetallpulverNickelPulverbettPulverbettverfahrenTitan

Verwandte Artikel

Beim Ultraschallfügen verbinden sich Holz und Grundbauteil durch Reibungshitze.
31.08.2024

Klebstofffreie Verbindung von Holz und Metall

Forschenden der TU Graz gelang es mittels 3D-Drucktechnik und Ultraschall, den nachwachsenden Rohstoff Holz mit Metall und Kunststoff-Verbundwerkstoffen extrem fest zu ve...

3D-Druck Additive Fertigung Additive Manufacturing Addjoining Automobilbau Fahrzeugbau Flugzeugbau Fügetechnik Holz Kunststoff-Verbundwerkstoffe Kunststoffe Metall Ultraschall Ultraschallfügen
Read more
31.08.2024

Adhesive-Free Joining of Wood and Metal

Using 3D printing technology and ultrasonic joining technique, researchers at TU Graz succeeded in attaining an extremely strong joining of the renewable raw material woo...

Additive Manufacturing AM Frictional Heat Joining Lightweight Construction Ultrasonic Construction
Read more
Ein Mitarbeitender in Schutzkleidung, einschließlich eines Helms und eines Gesichtsschutzes, steht vor einem offenen, glühend heißen Industrieofen. Die Person hält ein Werkzeug und scheint den Ofen zu überwachen, in dem Aluminium geschmolzen wird.
29.08.2024

Primäraluminium einsparen

Der neue Technologiefilm des VDI Zentrums Ressourceneffizienz zeigt, wie Primär- durch Sekundäraluminium ersetzt und so u. a. eine deutliche Reduktion der CO₂-Emissionen...

Aluminium Primäraluminium Ressourceneffizienz Ressourcenschonung Sekundäraluminium
Read more
28.08.2024

Tracking of Semi-Finished Products

At the ALUMINIUM trade fair in Düsseldorf in October, Leibinger, together with coilDNA, will present a smart code system that enables seamless tracking of any and all par...

Aluminium Semi-Finished Products Trade Fair
Read more
23.08.2024

Dörrenberg StudienAWARD 2025 ausgelobt

Für Studierende mit einem werkstofftechnischen Schwerpunkt vergibt die Dörrenberg Edelstahl GmbH jährlich einen Förderpreis, der mit insgesamt 10.000 Euro dotiert ist.

Additive Fertigung Edelstahl Feingießen Gießen Ingenieurwissenschaften Nachwuchsförderung Randschichtbehandlung Stahlherstellung Stahlweiterverarbeitung Wärmebehandlung Werkstofftechnik Werkzeugbeschichtung
Read more