Trendthema
In den „AM FATIGUE LABS“ entwickelt das Fraunhofer LBF Methoden, um mittels moderner Analysetechnik die Beanspruchungen für additiv gefertigte Bauteile zu simulieren und daraus Bemessungsempfehlungen für die zuverlässige Bauteilgestaltung abzuleiten. - © Fraunhofer LBF/Raapke
17.10.2020

Additive Fertigung: Neues Laboratorium simuliert Bauteil-Beanspruchungen

Additive Fertigung: Neues Laboratorium simuliert Bauteil-Beanspruchungen

Die additive Fertigung stößt derzeit in vielen Bereichen des Maschinen-, Anlagen- und Fahrzeugbaus auf ein stetig wachsendes Interesse. Um die Zuverlässigkeit derartig gefertigter Bauteile besser steuern zu können, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF mit den „AM FATIGUE LABS“ ein neues Laboratorium eingerichtet. Darin werden Methoden entwickelt, die Beanspruchungen für additiv gefertigte Bauteile simulieren, die wiederum als Grundlage für Bemessungsempfehlungen dienen.

Mit diesen realitätsnahen Simulationen lassen sich zutreffende Bemessungskennwerte zur Auslegung solcher Bauteile ermitteln. Sie gewährleisten außerdem eine verlässliche Designvalidierung, indem sie den Einfluss sämtlicher relevanter Prozessparameter, der Betriebsbeanspruchungen sowie, je nach Anwendungsfall, Umwelteinflüsse berücksichtigen. Dabei steigern eigens entwickelte Belastungssimulatoren die Präzision und Reproduzierbarkeit der Messungen. Dies ermöglicht einen Einblick in das zyklische Werkstoff- und Bauteilverhalten, der mit klassischen Prüfmethoden kaum gelingt.

Um die Vorteile der additiven Fertigung im Sinne des Leichtbaus auch für sicherheitsrelevante Komponenten erschließen zu können, sind zahlreiche Herausforderungen im Wechselfeld von Bauteilgeometrie, Fertigung, Betriebsbeanspruchungen und Umwelteinflüssen zu meistern. Abhängig u.a. von der Bauteilgeometrie, der Belichtungsstrategie und dem verwendeten Werkstoff, lassen sich nahezu beliebige Eigenschaftsgradienten im Bauteil einstellen. Diese können jedoch auch dazu führen, dass geometrisch identische Bauteile unter gleicher Belastung deutlich unterschiedliches Betriebsverhalten und schließlich Lebensdauern haben.

Lokale Phänomene treiben Bauteilermüdung

Der Erkenntnis, dass die Ermüdung von Bauteilen durch lokale Phänomene getrieben wird, kommt vor allem bei additiv gefertigten Komponenten eine gesteigerte Bedeutung zu. „Die neuen Freiheitsgrade bei der Bauteilentwicklung erfordern ein neues Bemessungskonzept, um das Potenzial dieser Fertigungstechnologie auch für zyklisch beanspruchte, sicherheitsrelevante Bauteile heben zu können“, erklärt Dr. Rainer Wagener, unter dessen Federführung das neue Laboratorium am Fraunhofer LBF errichtet wurde.

Um die Zuverlässigkeit additiv gefertigter Bauteile besser steuern zu können, hat das Fraunhofer LBF die „AM FATIGUE LABS“ eingerichtet. - © Fraunhofer LBF/Raapke
Um die Zuverlässigkeit additiv gefertigter Bauteile besser steuern zu können, hat das Fraunhofer LBF die „AM FATIGUE LABS“ eingerichtet. © Fraunhofer LBF/Raapke

Der Herstellungsprozess induziert zum einen geometrische Defekte in Form von Poren, Einschlüssen oder rauen Oberflächen, zum anderen führt die lokal stark begrenzte Erwärmung zur Ausbildung signifikanter Eigenschaftsgradienten. Neben den Parametern der Belichtungsstrategie oder des Prozessgases die direkt vom Benutzer gesteuert werden können, spielt unter anderem auch die Baurichtung sowie die Auslegung erforderlicher Stützstrukturen eine erhebliche Rolle bei der Ausbildung der Werkstoffmikrostruktur und somit der lokalen Eigenschaften inklusive der Defektverteilung.

Optische Dehnungsmessung bringt neue Erkenntnisse

In den AM FATIGUE LABS setzt das Team des Fraunhofer LBF unterschiedliche optische Dehnungssensoren ein, deren Messsignale über die erforderliche Echtzeitfähigkeit verfügen. Auf diese Weise wird eine Dehnungsregelung beispielweise in versagensrelevanten Bauteilbereichen ermöglicht. Gleichzeitig können die Darmstädter Wissenschaftlerinnen und Wissenschaftler aus der lastsynchronen Messung lokaler Dehnungsfelder Informationen über den lokal wirkenden Schädigungsmechanismus ableiten. Diese Informationen können zur Bauteiloptimierung genutzt werden.

Darüber hinaus lassen sie sich auch zur Steigerung der Werkstoffausnutzung durch Berücksichtigung des defektorientierten Werkstoffverhaltens bereits in frühen Auslegungsphasen nutzen. „Durch die Ableitung dedizierter Bemessungskonzepte und Untersuchungsmethoden wird dabei für additiv gefertigte Komponenten eine Anwendungssicherheit geschaffen, die mit derzeitig verfügbaren Regelwerken, welche sich allesamt an klassischen Herstellungstechnologien orientieren, nicht zu erreichen ist.“, betont Dr. Wagener.

Das Fraunhofer LBF bedankt sich beim Bundesministerium für Bildung und Forschung für die Förderung des Verbundprojektes „Betriebsfestigkeit additiv gefertigter Bauteile – BadgeB“, mit dem ein Teil des AM FATIGUE LABS realisiert werden konnte.

(Quelle: Presseinformation des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF)

Schlagworte

Additive FertigungBauteilgeometrieLeichtbauSimulation

Verwandte Artikel

Rückblick auf die CADFEM Conference 2024 in Darmstadt mit über 700 Teilnehmern - hier Blick ins Plenum.
17.11.2024

Neue internationale Conference Series zu Digital Engineering

Um sich über die virtuelle Simulation auszutauschen, bietet CADFEM in 2025 eine neue Conference Series an, bei der es unter anderem um Expertenwissen und Best-Practice-Be...

Digital Engineering Digitalisierung Simulation Software
Mehr erfahren
Mit der aktuell im Aufbau befindlichen Anlage lassen sich mithilfe von LCoS-SLMs durch gezielte Krümmung der Phasenfront des Laserstrahls nahezu beliebige Strahlprofile im LPBFProzess erzeugen.
11.11.2024

Flexible Strahlformungs-Plattform optimiert LPBF-Prozesse

Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed...

Additive Fertigung Laser Powder Bed Fusion LPBF SLM Spatial Light Modulators Strahlformung
Mehr erfahren
Roboterschweißsystem, ausgestattet mit 2 CMT-Schweißbrennern, fügt die Endkappen an den Mantelschuss.
05.11.2024

Mit Leichtigkeit CO₂ sparen

Die SAG Group integriert innovative Leichtbauweise in den Fahrzeugbau und hilft dadurch CO₂ einzusparen. Geschweißt werden sie mit patentierter CMT- und WireSense-Technol...

Aluminium CO₂-Fußabdruck CO₂-Reduzierung Fahrzeugbau Leichtbau Schweißtechnik
Mehr erfahren
SEAT (Daniel Cortina) und Hexagon (Josh Weiss) beschließen Partnerschaft.
31.10.2024

Beschleunigte Fertigungseffizienz und Industrialisierung neuer Autos

Hexagon hat seine Zusammenarbeit mit dem Automobilhersteller SEAT S.A. ausgeweitet, die auf einer 25-jährigen Partnerschaft mit der Abteilung Manufacturing Intelligence b...

Automobilindustrie Digitalisierung Fertigungsprozesse Prozesssimulation Prüfprozesse Prüftechnik Qualitätssicherung Sensorik Simulation Software
Mehr erfahren
Die neuentwickelte flexible Fräskinematik mit Hybridantrieb auf einer Linearachse bearbeitet hochpräzise ein CFK-Flugzeugseitenleitwerk im 1:1-Maßstab.
29.10.2024

Hochpräziser Bearbeitungsroboter mit neuartigem Antriebsstrang

Eine neu entwickelte Fräskinematik auf Linearachse ermöglicht vielseitige und effiziente Bearbeitung unterschiedlichster Werkstoffe.

Automation Bearbeitungsroboter Fräskinematik Leichtbau Leichtbauwerkstoffe Metalle Robotik Stähle
Mehr erfahren