Kommentar
© unsplash
31.05.2023

Durch ChatGPT den Blick auf das Elektronenstrahlschweißen weiten

Durch ChatGPT den Blick auf das Elektronenstrahlschweißen weiten

Detailliertes und anwendungsbereites Wissen zum Thema Elektronenstrahlschweißen (Englisch: Electron Beam Welding, EB-Welding) ist bereits Gegenstand in vielen Publikationen. Die darin vermittelte Vielfalt zu Technik, Verfahren, Technologien oder Anwendungsmöglichkeiten ist aber in der Praxis oft noch nicht richtig angekommen. Dadurch wird ein erhebliches technisches und wirtschaftliches Potenzial nicht genutzt. Ganz besonders nachteilig wirkt sich das aus, wenn es Konstrukteure betrifft, die nicht erkennen. dass sie komplexe Bauteile aus fix und fertig bearbeiteten Einzelteilen mittels EB nahezu verzugsfrei zusammenfügen können, wodurch nicht nur Material und Arbeitsaufwand und -zeit gespart werden, sondern auch höhere Gebrauchswerte der Produkte zu erzielen sind als bei der konventionellen Fertigung.  

Ursachen für dieses Wissens-Gap liegen zum einen darin, dass die EB-Technologien in der universitären Ausbildung meist eine untergeordnete Rolle spielen: Wenn überhaupt werden nur sehr wenige Vorlesungsstunden darauf verwendet. Ähnlich verhält es sich mit einigen Lehrgängen zum Schweißfachingenieur. In beiden Fällen werden tradierte Vorgaben zu den Curricula als limitierend genannt. Zwar gibt es inzwischen Weiterbildungslehrgänge für Ingenieure zur „Fachkraft Elektronenstrahlschweißen“, in denen neben dem EB-Schweißen auch das EB-Bohren sowie die EB-Oberflächenmodifikation und sogar die Additive Fertigung mittels EB vermittelt werden, aber diese Lehrgänge werden allenfalls von denjenigen besucht, die schon mit dem EB zu tun haben – leider nicht von denjenigen, die das EB-Potenzial erst erkunden müssten. Und es handelt sich bei den Teilnehmern ausschließlich um Technologen, Konstrukteure fühlen sich bisher selten angesprochen. Zum anderen werden EB-Anwendungen seitens Unternehmen oft nicht kommuniziert, um eigene Wettbewerbsvorteile zu sichern. So arbeiten zwar tausende Maschinen weltweit mit dem EB, aber eher im Verborgenen. Die in jüngerer Zeit entwickelten und eingeführten faszinierenden technischen und technologischen Features sind nur Insidern bekannt.

Mechanismen zur Generierung von Aufmerksamkeit

Um Wissenslücken im Bereich EB zu schließen, lassen sich einige Methodiken erdenken. Vor allem aber neue Technologien des Internets scheinen durchaus dienlich. ChatGPT, die jetzt allgemein verfügbare künstliche Intelligenz von OpenAI ist zurzeit in aller Munde. Eine gute Gelegenheit, dem Programm auf den Zahn zu fühlen und die Tauglichkeit für den Bereich der Schweißtechnik zu überprüfen. Mit einem verblüffenden Ergebnis wartet die KI bei der Bitte auf, den Unterschied zwischen Elektronenstrahlschweißen und Laserstrahlschweißen zu erklären. Nach gerade einmal 15 Sekunden liefert sie eine, zwar recht oberflächliche, Antwort, auf Basis derer sich, wie bei Chat GPT üblich, die Frage aber konkretisieren lässt. Ein Teil der Antwort: „Beim Elektronenstrahlschweißen wird die Energie höchst konzentriert eingebracht, wodurch sich das Bauteil nicht verzieht. Im Vergleich zu herkömmlichen Schweißverfahren wie dem Lichtbogenschweißen, bei dem eine größere Wärmeeinwirkung auf das Material erfolgt, bietet das Elektronenstrahlschweißen eine präzisere und kontrolliertere Wärmeeinbringung. Dies führt zu geringeren Verformungen des Bauteils während des Schweißprozesses, was es ermöglicht, komplexe Bauteile aus fertig bearbeiteten Einzelteilen zusammenzufügen – ein Vorteil, den der Konstrukteur nutzen sollte.“ Das Programm ergänzt: „Es ist jedoch bedauerlich zu bemerken, dass das Elektronenstrahlschweißen oft weniger Beachtung erhält als das Laserschweißen. Obwohl beide Verfahren ähnliche Ergebnisse erzielen können, wird in der Berichterstattung und Lehre oft mehr auf das Laserschweißen eingegangen. Dies könnte dazu führen, dass das ökonomische Potenzial des Elektronenstrahlschweißens nicht vollständig ausgeschöpft wird, da es in bestimmten Anwendungen und Materialien vorteilhaft sein kann.“

Ein Auszug aus der Anfrage an Chat GPT - © Schulze-Consulting - Beratung für Elektronenstrahl-Anwender
Ein Auszug aus der Anfrage an Chat GPT © Schulze-Consulting - Beratung für Elektronenstrahl-Anwender

Relevant ist, dass ChatGPT diesen Text nach Schnellrecherche im Internet generiert. Mitnichten kann hier von einer Vollständigkeit gesprochen werden. Als Ausgangspunkt einer Recherche kann das Tool selbstverständlich dennoch dienlich sein. Nach einer weiteren Literaturrecherche im Internet liefert Chat GPT beispielsweise ergänzende Informationen zum Unterschied zwischen dem Elektronenstrahlschweißen und den Laserstrahlverfahren: „Einer der Hauptunterschiede zwischen Elektronenstrahlschweißen und Laserstrahlschweißen liegt in den Arbeitsprinzipien. Beim Elektronenstrahlschweißen wird die Schweißwärme mit schnellen Teilchen erzeugt, beim Laserstrahlschweißen mit Licht. Obwohl beide Verfahren ähnliche Ergebnisse erzielen können, gibt es Unterschiede in Bezug auf ihre Anwendungsbereiche und Vorteile. Zum Beispiel bietet das Elektronenstrahlschweißen aufgrund der höheren Energie die Möglichkeit dickere Querschnitte zu fügen, obwohl mit entsprechenden Parametern auch sehr feine Nähte zu schweißen sind.“

Irrglaube in Bezug auf das EB-Schweißen

Mit den oben genannten Defiziten in der Verbreitung des EB kann Chat GPT natürlich nicht aufräumen. Wenn man das Tool aber nutzt, um sich einen ersten Einblick zu verschaffen, wird schon deutlich, welche Vorteile mit dem EB zu generieren sind und dass man sich tiefer damit beschäftigen sollte. In der Industrie wie auch an den Universitäten wird immer wieder auf angebliche Nachteile der EB-Anwendung verwiesen; man sollte lieber von Besonderheiten sprechen. Zu den verbreiteten Irrmeinungen zählt, die Anwendung sei zu teuer, zu aufwändig, zu genau, zu störanfällig, zu gefährlich. Endscheidend ist am Ende natürlich, ob ein Verfahren wirtschaftlich ist. So ist der Maschinenpreis allein beispielsweise kein Kriterium dafür, dass etwas zu teuer sei. Mehr als 50 Prozent der Netzanschlussenergie einer kompletten EB-Maschine gelangen in den Schweißprozess – höchst kostensparend also. Aufwändig ist das EB-Schweißen auch deshalb nicht, weil jeder Aufwand für Zusatzwerkstoff entfällt. Und wenn beklagt wird, dass ein EB-Fügestoß genau bearbeitet werden sollte, ist das ja eher immanent, wenn doch fix und fertig bearbeitete Einzelteile verbunden werden können. Wenn eine EB-Maschine störanfällig wäre, könnte eine EB-Massenfertigung mit Stückzeiten von 15 Sekunden für einbaufertig geschweißte Getrieberadkombinationen gar nicht funktionieren. Wie irrig derartige Meinungen sind, zeigt die diffuse Angst vor der Röntgenstörstrahlung: Es kann aus physikalisch-technischen Gründen niemand verstrahlt werden. Man sollte also fair bleiben und den Blick so weiten, dass auch das Elektronenstrahlschweißen ins Blickfeld rückt!

 

(Quelle: Kommentar von  Dr. Klaus-Rainer Schulze, Schulze-Consulting - Beratung für Elektronenstrahl-Anwender)

Schlagworte

Additive FertigungElectron Beam WeldingElektronenstrahlschweißenIngenieurKILaserLaserstrahlLichtbogenStrahlschweißenTechnologieVerfahren

Verwandte Artikel

Windenergieanlagen werden von TÜV SÜD mit KI-gestützten Drohnen effizienter inspiziert.
14.11.2024

Effizientere Prüfung von Windenergieanlagen mit Industrial Drone Inspections IDIAI

TÜV SÜD setzt auf KI und den Einsatz von Drohnen, um visuelle Inspektionen von Windenergieanlagen effizienter zu machen.

Drohnentechnologie Inspektion KI Qualitätssicherung Windenergie
Mehr erfahren
Mit der aktuell im Aufbau befindlichen Anlage lassen sich mithilfe von LCoS-SLMs durch gezielte Krümmung der Phasenfront des Laserstrahls nahezu beliebige Strahlprofile im LPBFProzess erzeugen.
11.11.2024

Flexible Strahlformungs-Plattform optimiert LPBF-Prozesse

Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed...

Additive Fertigung Laser Powder Bed Fusion LPBF SLM Spatial Light Modulators Strahlformung
Mehr erfahren
29.10.2024

Mit KI und AR Produktionsprozesse optimieren

SALT AND PEPPER treibt mit innovativen Lösungen die Fertigungsindustrie voran und hilft Unternehmen, Effizienz zu steigern und Wissen zu sichern.

AR Augmented Reality Fertigung Fertigungsprozesse KI Künstliche Intelligenz Produktion Produktionsprozesse
Mehr erfahren
Übergabe der arc405 für den 3D-Metalldruck großer Bauteile an die TU Dortmund. (v.l.) Janis Blattner (GEFERTEC), Manuel Pinho Ferreira (TU Dortmund), Karsten Steuer (GEFERTEC).
25.10.2024

Eine arc405 von GEFERTEC für Forschungsprojekte

Am Lehrstuhl für Werkstofftechnologie an der TU Dortmund wird das Portfolio der Verfahren, die für die Forschung zur Verfügung stehen, um das WAAM-Verfahren erweitert. Z...

Additive Fertigung Automation Automatisierung Maschinenbau Titan WAAM Werkstofftechnik Wire Arc Additive Manufacturing
Mehr erfahren
Dr. Tim Lantzsch (links) vom Fraunhofer ILT und Dr. Stefan Leuders (rechts) von voestalpine diskutieren über die aktuellen Trends im metallischen 3D-Druck, die das Potenzial haben, die industrielle Produktion nachhaltig zu verändern.
24.10.2024

Additive Fertigung im technologischen Wandel

Dr. Stefan Leuders (voestalpine Additive Manufacturing Center GmbH), und Dr. Tim Lantzsch, (Fraunhofer ILT) diskutieren über die aktuellen Trends der Additiven Fertigung.

Additive Fertigung Automobilindustrie Laser Powder Bed Fusion Luftfahrt Maschinenbau Metallischer 3D-Druck Metallverarbeitung Nachhaltigkeit Prozesssicherheit Raumfahrt
Mehr erfahren