Forschung
© H + W Härte- und Werkstofftechnik GmbH Eppingen
06.05.2022

Steigerung der Energie- und Ressourceneffizienz beim Einsatzhärten

Steigerung der Energie- und Ressourceneffizienz beim Einsatzhärten

In einem aktuellen Vorhaben der Industriellen Gemeinschaftsforschung (IGF-Nr. 51 EWBR) unter Leitung der FOSTA – Forschungsvereinigung Stahlanwendung e. V., Düsseldorf entwickelten Wissenschaftler der Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar ein Konzept zur numerischen Ermittlung von Zielgrößen des Einsatzhärtens aus dem Bauteilbeanspruchungszustand und ermöglichen damit eine signifikante Steigerung der Energie- und Ressourceneffizienz beim Einsatzhärten.

Durch das thermochemische Verfahren Einsatzhärten ist es möglich, die Verschleiß- und Schwingfestigkeiten von Stahlbauteilen zu erhöhen. Grundlage dafür bilden höherfeste Gefügezustände und Druckeigenspannungen. Diese werden durch die Einlagerung von Kohlenstoff (Aufkohlen) in die Metallkristallstruktur des Stahlwerkstoffes bei Temperaturen zwischen 850 °C und 1050 °C und eine anschließende schnelle Abkühlung (Abschrecken) erreicht.

Derzeitiger Stand der Technik ist, die Zielgrößen des Einsatzhärtens, wie die Aufkohlungs- und Einsatzhärtungstiefe sowie die Randhärte, empirisch anhand der globalen Geometrie des Stahlbauteils festzulegen. Auf Basis dieser empirischen Zielgrößen werden dann die notwendigen Prozessparameter des Einsatzhärtens, wie Kohlenstoffpegel und Aufkohlungszeiten bei gegebener Aufkohlungstemperatur ermittelt.

Abb. 1: Wellenproben mit Querbohrung (oben) und mit Umfangskerb (unten). - © Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar
Abb. 1: Wellenproben mit Querbohrung (oben) und mit Umfangskerb (unten). © Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar

Im IGF-Projekt wurde ein Konzept zur numerischen basierten Ermittlung beanspruchungskontrollierter Zielgrößen des Einsatzhärtens entwickelt. In diesem Konzept bildet der Zustand des Stahlbauteils infolge einer äußeren Beanspruchung die entscheidende Grundlage. Maßgebend ist der tatsächliche Beanspruchungszustand im versagenskritischen Bereich des Stahlbauteils. Für genau diesen Bereich werden dann die notwendigen Zielgrößen des Einsatzhärtens definiert. Damit wird es möglich, beispielsweise Aufkohlungs- und Einsatzhärtungstiefen signifikant zu reduzieren. Gegenüber der bisherigen empirischen Vorgehensweise kann damit die Energie- und Ressourceneffizienz des Einsatzhärtens gesteigert werden.

Für die industrielle Anwendung wurde das Konzept in ein nutzerfreundliches Softwaresystem als Demonstrator integriert. Die Validierung des Konzepts erfolgte mittels Wellenproben mit unterschiedlichen Formen von versagenskritischen Bereichen (Abbildung 1).

Für eine torsionsbeanspruchte Wellenprobe mit Querbohrung (Kerbdetail) konnte beispielsweise durch die Anwendung des neuen Konzeptes die notwendige Gesamtprozesszeit um 45 % im Vergleich zur Standardeinsatzhärtung (Gasaufkohlung im Wärmebehandlungsofen) reduziert werden (Abbildung 2). Eine Reduzierung der Gesamtprozesszeit um 55 % wurde für eine biegebeanspruchte Wellenprobe mit Umfangskerb (Kerbdetail) erreicht (Abbildung 2). Experimentell konnte weiterhin nachgewiesen werden, dass durch die Reduzierungen keine negativen Auswirkungen auf die Beanspruchbarkeit der Stahlbauteile zu erwarten sind.

Abbildung 2: Gesteigerte Energie- und Ressourceneffizienz am Beispiel reduzierter Aufkohlungsprofile - © Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar
Abbildung 2: Gesteigerte Energie- und Ressourceneffizienz am Beispiel reduzierter Aufkohlungsprofile © Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar

Das IGF-Vorhaben 51 EWBR / FOSTA-P 1318 „Steigerung der Werkstoff- und Ressourceneffizienz beim Einsatzhärten durch beanspruchungskontrollierte Kohlenstoff- und Härteprofile“ der FOSTA – Forschungsvereinigung Stahlanwendung e. V., Düsseldorf, wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Das Vorhaben wurde am Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar durchgeführt. Die Forschungseinrichtung und die FOSTA danken für die Förderung.

Kontakte:

FOSTA – Forschungsvereinigung Stahlanwendung e. V.
Sohnstraße 65
40237 Düsseldorf
Tel.: +49 211 30 29 76 00
E-Mail: fosta@stahlforschung.de

Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar
Postfach 2310
99404 Weimar
Tel.: +49 3643 564 0
E-Mail: info@mfpa.de

(Quelle: Pressemitteilung der FOSTA – Forschungsvereinigung Stahlanwendung e. V.)

Schlagworte

BauteilbeanspruchungEinsatzhärtenSchwingfestigkeitStähleVerschleißfestigkeit

Verwandte Artikel

Im EU-Projekt NANO-S-MART wollen Forschende Stahlschrott vermeiden und so zu einer verbesserten Kreislaufwirtschaft beitragen.
05.12.2024

Nachhaltiger Materialkreislauf für Stahl

Die Rohstoffressourcen des Planeten sind begrenzt. Forschende am KIT nehmen daher im nun gestarteten EU-Projekt NANO-S-MART den Materialkreislauf der Stahlproduktion in d...

Nachhaltigkeit Stähle
Mehr erfahren
Die neuentwickelte flexible Fräskinematik mit Hybridantrieb auf einer Linearachse bearbeitet hochpräzise ein CFK-Flugzeugseitenleitwerk im 1:1-Maßstab.
29.10.2024

Hochpräziser Bearbeitungsroboter mit neuartigem Antriebsstrang

Eine neu entwickelte Fräskinematik auf Linearachse ermöglicht vielseitige und effiziente Bearbeitung unterschiedlichster Werkstoffe.

Automation Bearbeitungsroboter Fräskinematik Leichtbau Leichtbauwerkstoffe Metalle Robotik Stähle
Mehr erfahren
21.10.2024

Update: DIN EN 14587-2 „Abbrennstumpfschweißen von neuen Schienen“

Es gibt eine Neufassung der DIN EN 14587-2 „Abbrennstumpfschweißen von Schienen [...] durch mobile Schweißmaschinen [...] an Orten außerhalb eines Schweißwerkes“.

Abbrennstumpfschweißen Bahnanwendungen Mobile Schweißmaschinen R200 R220 R260 R260Mn R320Cr R350HT R350LHT R370CrHT R400HT Schweißen Schweißtechnik Stähle
Mehr erfahren
Julianna Posey beim Vorbereiten der Stahlproben für ihre Untersuchung. Die US-Amerikanerin ist für ihre Promotion an der Hochschule Osnabrück nach Deutschland gekommen
20.10.2024

Untersuchungen über die Schweißbarkeit von additiv gefertigtem und gegossenem Stahl

Julianna Posey untersucht Schweißverbindungen aus gegossenem und additiv gefertigtem Stahl. Im Fokus stehen die Ermüdungserscheinungen des gedruckten Stahls nach dem Schw...

3D-Druck Additive Fertigung Luftfahrt Medizintechnik Schweißbarkeit Stähle
Mehr erfahren
19.10.2024

Nachhaltige Energieträger und KI in der Stahlindustrie

DVS Media und die Messe Essen laden am 19. November zum HÜTTENTAG 2024 ein. Das Motto „Nachhaltige Energieträger und künstliche Intelligenz – die neuen Erfolgsfaktoren fü...

KI Nachhaltige Energieträger Stähle Stahlhandel Stahlindustrie Wasserstoff
Mehr erfahren