Forschung
Schmiederohteileaus Stahl: Lässt sich mittels Querkeilwalzen ein ultrafeinesGefügeeinstellen? Das erforschen Ingenieurwissenschaftler am IPH im Projekt „Feinkornwalzen“. - © Ralf Büchler, IPH
08.07.2020

Werkstoffeigenschaften verbessern dank Feinkornwalzen

Werkstoffeigenschaften verbessern dank Feinkornwalzen

Kann das Querkeilwalzen die Eigenschaften eines Werkstoffs verbessern? Dieser Frage gehen Wissenschaftler am Institut für Integrierte Produktion Hannover (IPH) gGmbH im Forschungsprojekt „Feinkornwalzen“ nach. Ihr Ziel ist es, mittels eines einfachen Walzprozesses ein
ultrafeines Gefüge einzustellen und so die Festigkeit und Duktilität von Stahlbauteilen zu erhöhen.

Beim Querkeilwalzverfahren werden üblicherweise Vorformen für Bauteile hergestellt, die anschließend im Schmiedeprozess ausgeformt werden. Welche Möglichkeiten das Querkeilwalzen noch bietet, erproben die Ingenieurwissenschaftler des IPH im neuen Forschungsprojekt „Feinkornwalzen“.

Die Wissenschaftler wollen durch das Walzen nicht die Geometrie der Bauteile verändern, sondern die Gefügestruktur. Diese Veränderung ist nicht mit bloßem Auge ersichtlich: Ein Zylinder bleibt ein Zylinder. Der Unterschied steckt im Inneren des Werkstücks. Die kleinen Partikel, aus denen der Werkstoff besteht, werden zu einem ultrafeinen Gefüge gewalzt. Das hat den Vorteil, dass das Material eine höhere Festigkeit und Duktilität aufweist. Damit ist es möglich, kleinere und leichtere Bauteile zu konstruieren, die trotzdem hohen Belastungen standhalten – beispielsweise für den Leichtbau.

Schmiederohteile aus Stahl: Lässt sich mittels Querkeilwalzen ein ultrafeines Gefüge einstellen? Das erforschen Ingenieurwissenschaftler am IPH im Projekt „Feinkornwalzen“. - © Ralf Büchler, IPH
Schmiederohteile aus Stahl: Lässt sich mittels Querkeilwalzen ein ultrafeines Gefüge einstellen? Das erforschen Ingenieurwissenschaftler am IPH im Projekt „Feinkornwalzen“. © Ralf Büchler, IPH

Um ein ultrafeines Gefüge einzustellen, werden bisher zum Beispiel Verfahren wie „Equal Channel Angular Extrusion“ (ECAE) und „High Pressure Torsion“ (HPT) genutzt. Diese können allerdings nur schwer in bestehende industrielle Fertigungsketten implementiert werden, da sie spezielle Maschinen benötigen und mit einem hohen zeitlichen Aufwand verbunden sind. Mit dem Feinkornwalzen wollen die IPH Ingenieure eine Möglichkeit schaffen, mit bestehenden Querkeilwalzanlangen die Werkstoffeigenschaften zu verbessern. Schmiedeunternehmen könnten damit hohe Anschaffungskosten vermeiden und das Feinkornwalzen flexibel in schon bestehende Produktionsabläufe integrieren.

Derzeit legen die IPH-Ingenieure einen Querkeilwalzprozess aus, der zwar das Gefüge verändert, aber nicht die Geometrie des Bauteils. Anschließend untersuchen sie in Simulationsstudien und Experimenten, welche Parameter einen Einfluss auf den Prozess des Feinkornwalzens haben. Dazu variieren sie beispielsweise den Schulterwinkel, den Keilwinkel, die Umformgeschwindigkeit und die Temperatur des Werkstoffs sowie des Werkzeugs. Zudem untersuchen die Wissenschaftler, wie sich das Gefüge verändert, wenn das Bauteil nach dem Walzen in Öl, Wasser oder an der Luft abgekühlt wird.

Ziel der Forscher ist es, aus den untersuchten Parameterkombinationen ein Prozessfenster abzuleiten, das einen Walzprozess ermöglicht, bei dem sich das Gefüge wie gewünscht verändert und die Korngröße nach dem Walzen im ultrafeinkörnigen Bereich liegt.

Das Projekt wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert und läuft zwei Jahre. Weitere Informationen zum Projekt finden Sie hier.

(Quelle: Presseinformation des Instituts für Integrierte Produktion Hannover (IPH) gGmbH)

Schlagworte

FeinkornwalzenLeichtbauQuerkeilwalzenStahlbauStahlbauteile

Verwandte Artikel

Die Traversen für das Dach des Bernabéu-Stadions von Real Madrid Sind aus dem hochfesten Premiumstahl S60QL1 von Dillinger.
08.12.2024

Hochfester Stahl als Spielmacher für Real Madrid

Bei der Transformation des Estadio Santiago Bernabéu in eine Multifunktionsarena setzte Real Madrid auf den Premiumstahl S690QL1 von Dillinger für leichte Konstruktionen.

Konstruktion S690QL1 Staähle Stahlbau
Mehr erfahren
Mit dem letzten Bauabschnitt, der
03.12.2024

Stahlbau: „Superradwegenetz Tübingen“ fertiggestellt

Nach drei Jahren Bauzeit komplettiert eine 365 Meter lange Radwegbrücke von Schmees & Lühn seit Oktober 2024 das „Blaue Band“ in Tübingen, ein Zusammenschluss mehrerer Ra...

Brückenbau Mobilitätswende S690-Stahl Schweißtechnik Stahlbau
Mehr erfahren
Das Eingangsgebäude Freilichtmuseum Hagen von Schnoklake Betz Dömer Architekten und rmt Metall Technik GmbH erhielt den ersten Preis in der Kategorie Architektur.
01.12.2024

Verzinkerpreis 2025: Award für Architektur und Metallgestaltung ausgeschrieben

Der Industrieverband Feuerverzinken e.V. schreibt zum 19. Mal den Verzinkerpreis für Architektur und Metallgestaltung aus, der innovative feuerverzinkte Objekte auszeichn...

Architektur Design Feuerverzinken Metallgestaltung Stahlbau Verzinken
Mehr erfahren
01.12.2024

Schweißen im Stahlbau

„Schweißen im Stahlbau“ ist das Buch, das Schweißbetriebe benötigen. Es bietet alle erforderlichen Dokumente auf einen Griff und im handlichen Format sowie in den aktuell...

DIN EN 1090-1 DIN EN 1090-2 Herstellerqualifizierung Schweißen Stahlbau
Mehr erfahren
Roboterschweißsystem, ausgestattet mit 2 CMT-Schweißbrennern, fügt die Endkappen an den Mantelschuss.
05.11.2024

Mit Leichtigkeit CO₂ sparen

Die SAG Group integriert innovative Leichtbauweise in den Fahrzeugbau und hilft dadurch CO₂ einzusparen. Geschweißt werden sie mit patentierter CMT- und WireSense-Technol...

Aluminium CO₂-Fußabdruck CO₂-Reduzierung Fahrzeugbau Leichtbau Schweißtechnik
Mehr erfahren