Research
Der Laser „Dynamic Beam“ aus Jerusalem ist inzwischen im Fraunhofer IWS in Dresden installiert. Das Institut ist damit die weltweit erste Forschungseinrichtung, die eine solche Laserlösung im Einsatz hat. - © René Jungnickel/Fraunhofer IWS Dresden
31.07.2021

Flexibler Faserlaser für die flinke Materialbearbeitung

Flexibler Faserlaser für die flinke Materialbearbeitung

Laser-Experten aus Sachsen und Israel erproben derzeit gemeinsam am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden einen neuartigen Laser für den Industrieeinsatz. Das System basiert auf der für Hochleistungslaser noch jungen Methode des „Coherent Beam Combinings“ (CBC). Der 13-Kilowatt-Laser kann im laufenden Betrieb besonders schnell verschiedene Energieverteilungsmuster erzeugen und dadurch selbst anspruchsvolle Hightech-Materialien sehr präzise und schnell bearbeiten. Die Fraunhofer-Forscher wollen die innovative Lasertechnik aus Israel demnächst auch weltweit Unternehmen zur Verfügung stellen. Innerhalb eines europäischen Netzwerkprojekts untersucht das Fraunhofer IWS bereits mit dem Laserhersteller Civan Lasers und A. Kotliar Laser Welding Solutions die um ein Tausendfaches beschleunigte Strahlformung erstmals für das Additive Manufacturing.

Der Laser „Dynamic Beam“ aus Jerusalem ist inzwischen im Fraunhofer IWS in Dresden installiert. Das Institut ist damit die weltweit erste Forschungseinrichtung, die eine solche Laserlösung im Einsatz hat. Gemeinsam mit dem Kooperationspartner Civan Lasers erhoffen sich die Forscher von der Erprobung in Sachsen nicht zuletzt neue Anwendungsszenarien. „Dieser Laser wird die Grenzen der Materialbearbeitung, zum Beispiel in der Medizintechnik sowie in der Luft- und Raumfahrt weiter hinausschieben“, prognostiziert Dr. Andreas Wetzig, der am Fraunhofer IWS das Technologiefeld Trennen und Fügen leitet. Er verweist dabei auf das sächsisch-israelische Forschungssprojekt „ShapeAM“ im Rahmen des europäischen Netzwerkprogramms „M-era.Net“, in dem dieser neue Laser eine zentrale Rolle spielen wird und das im Juli 2021 gestartet ist.

Aktuell erproben Laser-Experten des Fraunhofer IWS den neuartigen israelischen Laser „Dynamic Beam“ für den Industrieeinsatz. - © René Jungnickel/Fraunhofer IWS Dresden
Aktuell erproben Laser-Experten des Fraunhofer IWS den neuartigen israelischen Laser „Dynamic Beam“ für den Industrieeinsatz. © René Jungnickel/Fraunhofer IWS Dresden
Tausendmal schneller

Im Einsatz ist dabei das Coherent Beam Combining, was sich mit „Kohärente Strahlkombination“ übersetzen lässt. Denn der Dynamic Beam Faserlaser vom israelischen Unternehmen Civan Advanced Technologies kombiniert Dutzende Einzelstrahlen zu einem leistungsstarken Laserstrahl mit hoher Qualität. Durch kleine Phasenverschiebungen (Optical Phased Array = OPA) der Wellentäler und -berge in den Teilstrahlen kann der Laser rasch ganz verschiedene Energieverteilungsmuster im resultierenden Bearbeitungs-Laserstrahl erzeugen: Während ein klassischer Laser die meiste Energie nur in der Strahlmitte freisetzt, kann das System aus Israel auf den Werkstücken beispielsweise Energiemuster in Form eines Rings, einer Acht oder eines Hufeisens erzeugen. Prinzipiell war dies zwar auch früher schon mit strahlablenkenden Optiken oder schnell schwingenden Spiegeln möglich. Doch selbst die schnellsten Schwingspiegel brauchen noch Millisekunden, um die Energiemuster im Strahl neu auszurichten. Der Dynamic Beam Faserlaser schafft das dagegen Tausendmal schneller, binnen Mikrosekunden.

Diese Geschwindigkeit macht es erstmals möglich, die dynamische Strahlformung für die Additive Fertigung von Metallen einzusetzen. Im Rahmen von „ShapeAM“ testen die Forscher das neue CIVAN-System, um verbesserte Werkstoffeigenschaften zu erzielen. Konkret geht es um die Additive Fertigung von Titan- und Aluminium-Legierungen, wie sie für Raumfahrtbauteile, Implantate und Leichtbau-Komponenten für die Mobilität gebraucht werden. Dabei wollen die Partner die dynamische Strahlformung einsetzen, um Defekte zu eliminieren und somit eine höhere Qualität der 3D-Druckergebnisse zu erzielen. Dr. Eyal Shekel, CEO von Civan, freut sich auf das Projekt: „ShapeAM macht es uns möglich, die Vorteile des Dynamic-Beam-Shapings in der additiven Fertigung von Metallen zu explorieren.“ Dr. Elena Lopez, Abteilungsleiterin Additive Fertigung am Fraunhofer IWS, fügt hinzu: „Wir planen, neuartige Strahlformen und Steuerungsfrequenzen zu verwenden, die mit anderen Methoden nicht erreichbar sind, um die Herausforderungen bei rissempfindlichen Materialien zu überwinden.“

Reger Austausch zwischen Dresden und Jerusalem

Aus dem gemeinsamen Projekt soll sich ein fruchtbarer wissenschaftlicher und personeller Austausch zwischen Israel und Sachsen entwickeln: Das Fraunhofer IWS wird die Testergebnisse nach Jerusalem weiterleiten. Auch ist angedacht, zeitweise Austauschwissenschaftler nach Israel zu entsenden. Umgekehrt werden die Civan-Experten voraussichtlich im Laserlabor in Dresden eigene Versuche durchführen.
Die Tests am Dresdner Institut sollen die Möglichkeiten und Grenzen des Dynamic Beam Lasers ermitteln. Vorgesehen sind zunächst Basisversuche mit verschiedenen Strahlprofilen, Werkstoffen und Verfahren. Dann testen die Forscher konkrete Anwendungen aus, beispielsweise, wie gut das System diverse Werkstücke aus sonst schwer bearbeitbaren Werkstoffen und Werkstoffverbünden trennen, fügen oder additiv fertigen kann.

Das internationale Forscherteam wird unter anderem Schweißanwendungen untersuchen, um mit dem neuen Lasersystem Vorteile in puncto Verarbeitungsgeschwindigkeit und -qualität für vergleichbare Bauteile wie das abgebildete zu erzielen. - © René Jungnickel/Fraunhofer IWS Dresden
Das internationale Forscherteam wird unter anderem Schweißanwendungen untersuchen, um mit dem neuen Lasersystem Vorteile in puncto Verarbeitungsgeschwindigkeit und -qualität für vergleichbare Bauteile wie das abgebildete zu erzielen. © René Jungnickel/Fraunhofer IWS Dresden
„Dynamic Beam“ verdoppelt Arbeitstempo

Schon absehbar ist, dass sich mit dem neuen Laser die Schmelzbad-Dynamik bei vielen additiven und Fügeprozessen schneller und präziser steuern lässt – und dies nicht nur in der Fläche, sondern auch in der Tiefe. Auch beim Laserschneiden verspricht sich das Fraunhofer IWS Vorteile in Hinblick auf gratfreie Schnitte bei hoher Kantenqualität – bei doppeltem Arbeitstempo im Vergleich zu herkömmlichen Faserlasern.

Ob der neue Laser diese Erwartungen auch in der Praxis erfüllt, wird sich in der Erprobungsphase in Dresden zeigen. Die Qualitäts- und Geschwindigkeitsvorteile, die sich bereits abzeichnen, machen die Technik jedenfalls für den Einsatz in der metallverarbeitenden Industrie, der Medizintechnik und Elektromobilität sowie in der Luft- und Raumfahrtindustrie hochinteressant.

Online-Webinar und -Konferenz bieten Einblicke in erste Ergebnisse

Das Fraunhofer IWS wird am 14. September 2021 den am Dynamic Beam Faserlaser interessierten Partnern aus Industrie und Forschung in einem Webinar vorstellen. Dann wird es möglich sein, den Einsatz des CBC-Faserlasers für eigene Anwendungen beim Fraunhofer IWS zu erproben. Erste Erkenntnisse aus ihren Testreihen stellen die Fraunhofer-Wissenschaftler vom 7. bis 9. Dezember 2021 einem breiteren Fachpublikum bei der kombinierten Online-Veranstaltung Laser Symposium/ISAM 2021 in Dresden vor.

(Quelle: Presseinformation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS)

Schlagworte

Additive FertigungAluminiumlegierungenLasertechnologienMaterialbearbeitungSchweißtechnikSchweißverbindungenTitanlegierungen

Verwandte Artikel

Beim Ultraschallfügen verbinden sich Holz und Grundbauteil durch Reibungshitze.
31.08.2024

Klebstofffreie Verbindung von Holz und Metall

Forschenden der TU Graz gelang es mittels 3D-Drucktechnik und Ultraschall, den nachwachsenden Rohstoff Holz mit Metall und Kunststoff-Verbundwerkstoffen extrem fest zu ve...

3D-Druck Additive Fertigung Additive Manufacturing Addjoining Automobilbau Fahrzeugbau Flugzeugbau Fügetechnik Holz Kunststoff-Verbundwerkstoffe Kunststoffe Metall Ultraschall Ultraschallfügen
Read more
DVS Group
31.08.2024

Wachstumsmotor Schweißtechnik: Produktionswert legte 2023 zu

Die Schweißtechnik hat im vergangenen Jahr ihren Produktionswert um 9,9 Prozent gesteigert. Auch verglichen mit dem globalen Wirtschaftswachstum von 3,3 Prozent weist die...

Hilfsstoffe Schweißtechnik Schweißzusätze Wirtschaftsstandort Deutschland
Read more
28.08.2024

Update: Richtlinie DVS 2212-1 „Prüfung von Kunststoffschweißern für den Anlagenbau“

Mit Ausgabedatum August 2024 erscheint die Richtlinie DVS 2212-2 „Prüfung von Kunststoffschweißern für den Anlagenbau“ in einer neuen Fassung.

Apparatebau Behälterbau Fachkräftequalifizierung Fertigung Heizelement-Muffenschweißen Heizelement-Stumpfschweißen Heizwendelschweißen Infrarotschweißen Instandsetzung Kunststoffe Kunststoffschweißen Rohrleitungsbau Schweißtechnik Warmgas-Extrusionsschweißen Warmgas-Fächelschweißen Warmgas-Ziehschweißen Wulst- und Nutfreies Schweißen
Read more
Die Graebener® 2-Seiten-Plattenfräsmaschine wurde zur Kundenvorabnahme im Graebener® Werk teilvormontiert. Hier sieht man unter anderem die Einlaufseite, über die die Bleche in die Maschine befördert werden.
26.08.2024

Simultanes Fräsen bei der Herstellung von Offshore-Versorgungsplattformen

Graebener liefert seine Frästechnologie zusammen mit der Ingenieurtechnik und Maschinenbau GmbH erstmalig an die malaysische Werft Malaysia Marine & Heavy Engineering, di...

Blechbearbeitung Fräsen Maritime Technik Maschinenbau Metallbearbeitung Schweißnahtvorbereitung Schweißtechnik Sondermaschinenbau
Read more
25.08.2024

Erfassung und Optimierung des CO₂-Fußabdrucks beim Schweißen

Dr.-Ing. Sascha Rose hat sich intensiv damit befasst, wie die CO₂-Emissionen von MSG-Schweißungen erfasst und reduziert werden können. Seine Ergebnisse stellt er auf dem...

CO₂-Fußabdruck MSG Schweißen Ökobilanz Schneidtechnik Schweißtechnik
Read more