Forschung
Mit angepassten Strahlprofilen und einem Multistrahlansatz lässt sich die Leistung von UKP-Lasern effektiv nutzen. - © Fraunhofer ILT, Aachen/Volker Lannert
01.12.2022

Energiesparen mit programmierbaren Laserstrahlen

Programmierbare Laserstrahlen sparen mehr als  30 Prozent Energie

Neue Freiheiten eröffnen sich in der Lasermaterialbearbeitung: Mit einem Flüssigkristall-Modulator lässt sich das Strahlprofil eines Lasers zeitlich hochaufgelöst frei programmieren. Der Strahl kann auch in identische Kopien aufgeteilt werden. Zusammen mit einer Inline-Prozessüberwachung und einer intelligenten Steuerung wird eine Null-Fehler-Produktion möglich. Details werden im EU-Projekt METAMORPHA erforscht. Das Modul wird in drei Anwendungen zusammen mit großen Industriepartnern erprobt. 30 Prozent Energieeinsparung gegenüber herkömmlichen Verfahren sind dabei das angepeilte Mindestziel.

Die Technik: Schnell, genau und flexibel

Von Ultrakurzpuls (UKP)-Lasern hat man schon viel gehört: Mit Pulsen im Piko- oder Femtosekundenbereich können sie auch härteste Materialien abtragen und das auf Mikrometer genau. UKP-Laser sind inzwischen mit mehreren Hundert Watt Ausgangsleistung verfügbar, so dass sich Forschung und Entwicklung auf die Frage konzentrieren, wie man „die PS auf die Straße bringt“.

Am Fraunhofer-Institut für Lasertechnik ILT in Aachen wird daran seit Jahren gearbeitet. Neben verschiedenen UKP-Lasern verfügt das Team am Fraunhofer ILT auch über neueste Hochleistungs-Flüssigkristall-Modulatoren zur Strahlformung bei der Lasermaterialbearbeitung. Diese Modulatoren vertragen bis zu 150 Watt Laserleistung. Im EU-Projekt „METAMORPHA – Made-to-measure micromachining with laser beams tailored in amplitude and phase“ werden zwei von ihnen in einem Optikmodul zusammengeschaltet. Das Modul kann ein Strahlprofil einzeln oder als Multistrahl formen und ist mit verschiedenen Bearbeitungsanlagen kompatibel, zum Beispiel 3- Achs-Maschinen, 5-Achs-Maschinen, Drehmaschinen oder Rolle-zu-Rolle-Maschinen.

Im Projekt METAMORPHA wird die dynamische Strahlformung für industrielle Anwendungen optimiert und damit auf ein neues Niveau befördert. - © Fraunhofer ILT, Aachen
Im Projekt METAMORPHA wird die dynamische Strahlformung für industrielle Anwendungen optimiert und damit auf ein neues Niveau befördert. © Fraunhofer ILT, Aachen
Mit maschinellem Lernen zur Null-Fehler-Produktion

Ein großer Vorteil der Flüssigkristall-Modulatoren ist ihre Fähigkeit, das Strahlwerkzeug mehr als 60-mal in der Sekunde zu verändern. Das ermöglicht eine Optimierung des Bearbeitungsprozesses oder auch einen Prozesswechsel in einem geschlossenen Regelkreis. Dafür wird der Prozess kontinuierlich überwacht und mit einer intelligenten Steuerung geregelt. Optimiert werden Prozessparameter und -strategie über maschinelles Lernen, wodurch letztlich eine Fertigung mit 100 Prozent Gutteilen ermöglicht werden soll. Nach einer entsprechenden Lernphase lassen sich so Prozesse auch simulieren und optimierte Prozessparameter vordefinieren. Das Hauptziel des Projektes sind umfangreiche Einsparungen von Energie und die ressourceneffiziente Produktion. Das interessiert besonders die drei Industriepartner Ceratizit, thyssenkrupp und Philips. Sie alle haben Prozesse, für die der geplante laserbasierte Fertigungsansatz einen enormen Fortschritt hin zu einer nachhaltigen, wirtschaftlichen Produktion bedeuten würde.

Bei thyssenkrupp soll der Laser Prägewalzen strukturieren. Diese werden heute über Funkenerosion bearbeitet. Dafür fallen über 10 GWh pro Jahr an. Der Laser soll davon 90 Prozent sparen und darüber hinaus durch präzise Restrukturierung von verschlissenen Oberflächen eine zehnfach längere Lebensdauer der Prägewalzen erreichen. Bei Ceratizit geht es darum, Hartmetallstempel und Prägestempel zu fertigen und verschlissene Werkzeuge wiederaufzubereiten. Mit einer photonischen Prozesskette soll das schneller und sparsamer geschehen. Philips will in diesem Projekt die Herstellung eines Produktes aus dem Consumer-Bereich durch einen universellen Laserbearbeitungskopf stark vereinfachen.

EU-Projekt METAMORPHA

Gemeinsam wollen die Projektpartner neueste Lasertechnik, Prozesswissen und Steuerungs-Know-how zusammenführen, um etablierte Verfahren wie das Funkenerodieren oder das nasschemische Ätzen zu ersetzen und so signifikant Energie und Ressourcen zu sparen. Auch die Wiederaufbereitung von Werkzeugen mittels Lasermaterialbearbeitung ist ein wichtiger Schritt zu einem nachhaltigen Umgang mit Ressourcen. Am Ende wird die Lasertechnik so einen signifikanten Beitrag zum Schutz von Umwelt und Gesundheit leisten. Das Projekt startete am 1. September 2022 und wird mit einer Laufzeit von vier Jahren von der Europäischen Union gefördert.

Projektpartner:
  • Fraunhofer-Institut für Lasertechnik ILT (Koordinator)
  • RWTH Aachen Universität - Lehrstuhl für Technologie Optischer Systeme (TOS)
  • LASEA
  • Universitat Politècnica de València (UPV)
  • Datapixel
  • fentISS
  • Arditec
  • Vivid Components Germany
  • Ceratizit
  • thyssenkrupp Steel Europe
  • Philips Consumer Lifestyle

(Quelle: Presseinformation des Fraunhofer-Instituts für Lasertechnik ILT)

Schlagworte

EnergiesparenLaserstrahlenLasertechnologienMaterialbearbeitungUKP-LaserUltrakurzpulslaser

Verwandte Artikel

Ionenfalle für Quantencomputing, bearbeitet mit dem UKP-Laser.
15.12.2024

8. „UKP Workshop – Ultrafast Laser Technology“

Der „UKP Workshop“ bringt alle zwei Jahre Experten der Ultrakurzpulslaser-Technologie zusammen.

Lasertechnologien UKP-Laser Ultrakurzpulslaser
Mehr erfahren
EDVECSEL Das LZH forscht an einem elektrisch gepumpten, vertikal emittierenden Halbleiterlaser zur Ultrakurzpulserzeugung.
11.10.2024

Kompakt und kostengünstig: LZH forscht an neuartigen UKP-Lasersystemen

Aktuell wird an elektrisch gepumpten Halbleiterscheibenlasern zur Ultrakurzpuls-Erzeugung geforscht. Das soll die Entwicklung neuartiger UKP-Lasersysteme ermöglichen.

Lasersysteme UKP-Laser Ultrakurzpulslaser
Mehr erfahren
„Die Lasertechnologie bietet uns die Möglichkeit, die Herausforderungen der Wasserstoffwirtschaft auf eine nachhaltige und effiziente Weise zu meistern“, erklärte Dr. Alexander Olowinsky, Leiter der Abteilung Fügen und Trennen am Fraunhofer ILT und Gastgeber des LKH2.
05.10.2024

Laser-Technologien für die Zukunft der Wasserstoffwirtschaft

Beim 5. Laser Colloquium Hydrogen 2024 – LKH2 lag der Fokus auf der Fertigung von metallischen Bipolarplatten, der Prozessüberwachung und der Funktionalisierung von Oberf...

Bipolarplatten Diodenlaser Lasertechnologien Oberflächenbehandlung Oberflächenfunktionalisierung Prozessüberwachung Ultrakurzpulslaser Wasserstoff Wasserstoffwirtschaft
Mehr erfahren
Im Rahmen des DIPOOL-Projekts, optimieren Dr. Frank Schneider und sein Team mit KI und Minimalinvasiver Lasermodulation (MILM) die Prozessüberwachung und -steuerung in der Blechbearbeitung.
18.09.2024

Fraunhofer ILT und Dreher Automation stellen Laser Blanking-Anlage vor

Das Fraunhofer ILT und die Automatic-Systeme Dreher GmbH präsentieren auf der Euroblech eine Innovation für die Blechbearbeitung: Eine Demonstratoranlage für Laser Blanki...

Blechbearbeitung Fertigung Industrie 4.0 KI Laser Blanking Lasertechnologien Prozesssicherheit
Mehr erfahren
Steffen Rübling, TRUMPF (li), und Dr. Dennis Haasler, Fraunhofer ILT, besprechen Details zur Bedienung des 1kW UKP-Lasers von TRUMPF.
03.09.2024

Kilowatt-Boost in der UKP-Materialbearbeitung

Mit einer für den industriellen Einsatz konzipierten UKP-Laserstrahlquelle wird sich das Einsatzspektrum der UKP-Technologie deutlich ausweiten. Das Fraunhofer ILT wird d...

Hochleistungsstrahlquellen Lasertechnologien Strahllenkung Strahlteilung UKP-Laser Ultrakurzpulslaser
Mehr erfahren