Veranstaltung Technologien
SMaC kombiniert den EHLA-Beschichtungsprozess mit einem simultan ablaufenden subtraktiven Fertigbearbeitungsschritt und steigert die Produktivität dadurch erheblich. Die im Beschichtungsvorgang entstehende Prozesswärme führt zu einer deutlich einfacheren Zerspanung. - © Fraunhofer ILT, Aachen
30.10.2023

Fraunhofer ILT demonstriert solides, zukunftsweisendes Portfolio

Fraunhofer ILT demonstriert solides, zukunftsweisendes Portfolio

Fraunhofer-Institute sind Bindeglieder zwischen Forschung und industrieller Anwendung. Das zeigt das Fraunhofer-Institut für Lasertechnik ILT einmal mehr und eindrücklich auf der formnext vom 7. bis zum 10. November 2023 in Frankfurt am Main. Jedes Exponat erzählt eine Erfolgsgeschichte aus unterschiedlichen Branchen und Anwendungen, mit völlig verschiedenen Materialien und Verfahren.

Seit mehr als 35 Jahren treibt das Fraunhofer ILT die Additive Fertigung voran – insbesondere metallischer Bauteile, etwa mit Laser Powder Bed Fusion (LPBF) oder dem Laserauftragschweißen (Laser Material Deposition LMD). Im Fokus der breit aufgestellten Forschung steht neben dem Aspekt der Nachhaltigkeit die Optimierung der Wirtschaftlichkeit. Dafür betrachten die Laserexperten die Prozessketten ganzheitlich: vom Bauteildesign über die Prozessführung, Materialien und Anlagentechnik bis hin zur Endbearbeitung. In enger Zusammenarbeit mit führenden Unternehmen ist das Aachener Institut kontinuierlich an spannenden Entwicklungsprojekten beteiligt, von denen es einige auf dem Fraunhofer- Gemeinschaftsstand Halle 11, Stand D31 vorstellt.

Neue Entwicklungen rund um das Extreme Hochgeschwindigkeits- Laserauftragschweißen EHLA

Das neue Kombinationsverfahren Simultaneous Machining and Coating (SMaC) beispielsweise vereint den EHLA-Beschichtungsprozess mit einem simultan ablaufenden subtraktiven Fertigbearbeitungsschritt und steigert die Produktivität enorm. Neben den wirtschaftlichen Vorteilen bietet das SMaC-Verfahren im Vergleich zur konventionellen Prozesskette auch technologische Vorzüge.

Auf dem Fraunhofer- Gemeinschaftsstand der Weltleitmesse für Additive Manufacturing und industriellen 3D-Druck formnext zeigt das Fraunhofer ILT mehrere Exponate, die das Leistungsspektrum demonstrieren. - © Fraunhofer ILT, Aachen
Auf dem Fraunhofer- Gemeinschaftsstand der Weltleitmesse für Additive Manufacturing und industriellen 3D-Druck formnext zeigt das Fraunhofer ILT mehrere Exponate, die das Leistungsspektrum demonstrieren. © Fraunhofer ILT, Aachen

Die in dem Beschichtungsvorgang entstehende Prozesswärme führt zu einer Entfestigung des Werkstoffs und damit zu einer einfacheren Zerspanung. Dadurch ist eine werkzeugschonendere und schnellere Herstellung von Korrosions- und Verschleißschutzschichten sowie funktionaler Oberflächen möglich. Insbesondere beim Auftragen andernfalls schwer zerspanbarer, hochfester Beschichtungswerkstoffe bietet die SMaC-Technologie erhebliche Vorteile.

„Die hohen erforderlichen Relativgeschwindigkeiten können wahlweise durch hochdynamische Bewegung der Bauteilplattform oder des Bearbeitungskopfes erreicht werden“, erläutert Min-Uh Ko, Gruppenleiter Additive Fertigung und Reparatur LMD. Als Beispielexponat dienen auf der formnext 2023 dünnwandige Aluminium-Bauteile, entstanden aus einer Entwicklungskooperation mit der Ponticon GmbH.

Das EHLA-Verfahren wurde primär für Verschleiß- und Korrosionsschutzanwendungen von rotationssymmetrischen Bauteilen genutzt. In den letzten Jahren hat es in Zusammenarbeit mit verschiedenen Maschinenbauern und Endanwendern eine Weiterentwicklung der Anlagentechnik und Prozessführung für die additive Fertigung gegeben, die als EHLA 3D bezeichnet wird.

Das mit EHLA beschichtete Umformwerkzeug spart im Vergleich zum klassischen Werkzeugbau erheblich Zeit und Kosten. Tobias Keller von der Abteilung Oberflächentechnik und Formabtrag am Fraunhofer ILT hat es mittels Lasermaterialabtrag endbearbeitet. - © Fraunhofer ILT, Aachen
Das mit EHLA beschichtete Umformwerkzeug spart im Vergleich zum klassischen Werkzeugbau erheblich Zeit und Kosten. Tobias Keller von der Abteilung Oberflächentechnik und Formabtrag am Fraunhofer ILT hat es mittels Lasermaterialabtrag endbearbeitet. © Fraunhofer ILT, Aachen

„H2GO – Nationaler Aktionsplan Brennstoffzellen-Produktion“ bündelt die Aktivitäten von 19 Fraunhofer-Instituten mit dem Ziel, die CO2-Emissionen des straßengebundenen Schwerlastverkehrs zu reduzieren. Das Konsortium soll die industrielle Skalierung der Produktion von Brennstoffzellen in Deutschland vorantreiben.

Das Fraunhofer ILT beteiligt sich hier an der Verbesserung von Umformwerkzeugen zur Herstellung von Bipolarplatten. „Für das H2GO-Projekt entwickeln wir eine physische und digitale Prozesskette zur Beschichtung und Reparatur von Umformwerkzeugen mit dem EHLA-Verfahren“, erklärt Fraunhofer ILT Projektleiterin Dora Maischner.

Die AM-Experten präsentieren die aktuellen Forschungsergebnisse anhand eines besonderen Exponats: ein Umformwerkzeug, das mit EHLA beschichtet und anschließend durch Lasermaterialabtrag fertigbearbeitet wurde. „Unser Ziel ist es, auch für andere industrielle Anwendungen und Bereiche einfache Beschichtungs- und Reparaturprozesse zu entwerfen, die Zeit und Kosten im Werkzeugbau sparen“, so Maischner.

Durch kontinuierliche Verbesserungen ist die Additive Fertigung in der Luft- und Raumfahrt zu einer Schlüsseltechnologie geworden. Damit können Prototypen schneller erstellt, getestet und optimiert werden, was zu einer beschleunigten Innovationsrate führt. - © Fraunhofer ILT, Aachen
Durch kontinuierliche Verbesserungen ist die Additive Fertigung in der Luft- und Raumfahrt zu einer Schlüsseltechnologie geworden. Damit können Prototypen schneller erstellt, getestet und optimiert werden, was zu einer beschleunigten Innovationsrate führt. © Fraunhofer ILT, Aachen
KI-basierte Prozessauslegung beim Laserauftragschweißen

Der Erfolg und die Effizienz der Bauteilfertigung mittels Laserauftragschweißen (LMD) ist stark von der Geometrie der Bauteile abhängig, da sie die Temperaturentwicklung im Prozess beeinflusst. Konstante Verfahrensparameter und somit der konstante Energieeintrag führt zu Abweichungen in der Dicke der aufgetragenen Lagen, weil sich mit der Temperatur auch das Schmelzbadvolumen verändert. Insbesondere bei komplexer Geometrie erfordert dies bisher eine zeitintensive Prozessentwicklung.

Max Gero Zimmermann vom Fraunhofer ILT trainiert daher ein KI-Modell, um die Zusammenhänge zwischen Laserleistung, Geometrie sowie weiteren bauteilabhängigen Einflussfaktoren und der Größe der Schmelzbadoberfläche zu lernen. „Zunächst trainieren wir das KI-Modell mit Daten aus einem LMD-Prozess mit konstanten Verfahrensparametern beim Aufbau einer Geometrie“, so Zimmermann. Das Modell soll schließlich die Vorhersage der erforderlichen Laserleistung für einen stabilen Prozess ermöglichen, ohne umfangreiche Experimente durchführen zu müssen, beispielsweise, wenn sich die Geometrie eines Bauteils ändert.

„Der Aufwand für die Prozessentwicklung im LMD kann durch die Verwendung des KI-Modells erheblich reduziert werden“, so Zimmermann weiter. Das Modell soll zukünftig auch zur Vorhersage weiterer Verfahrensparameter, wie der Vorschubgeschwindigkeit, erweitert werden.

SMaC kombiniert den EHLA-Beschichtungsprozess mit einem simultan ablaufenden subtraktiven Fertigbearbeitungsschritt und steigert die Produktivität dadurch erheblich. Die im Beschichtungsvorgang entstehende Prozesswärme führt zu einer deutlich einfacheren Zerspanung. - © Fraunhofer ILT, Aachen
SMaC kombiniert den EHLA-Beschichtungsprozess mit einem simultan ablaufenden subtraktiven Fertigbearbeitungsschritt und steigert die Produktivität dadurch erheblich. Die im Beschichtungsvorgang entstehende Prozesswärme führt zu einer deutlich einfacheren Zerspanung. © Fraunhofer ILT, Aachen
Additive Fertigung für die Luft- und Raumfahrt

Durch die kontinuierlichen Verbesserungen der letzten Jahre ist die Additive Fertigung in der Luft- und Raumfahrt zu einer Schlüsseltechnologie für die Herstellung von Leichtbaukomponenten und -strukturen geworden. Funktionsfähige Bauteile lassen sich mit komplexen Geometrien und definierten aerodynamischen Eigenschaften innerhalb kürzester Zeit kosteneffizient fertigen.

Zudem können mithilfe von 3D-Druck schneller Prototypen erstellt, getestet und optimiert werden, was zu einer beschleunigten Innovationsrate führt. Dies wiederum verkürzt die Zeitspanne von der Konzeption bis zur Mission. „Gerade im schnell wachsenden Markt kommerzieller Weltraumanwendungen spielt die kostengünstige Produktion von Prototypen und Kleinserien eine entscheidende Rolle“, erklärt Simon Vervoort, Gruppenleiter Anwendungsentwicklung am Fraunhofer ILT. „Die kunden-und anwendungsspezifischen Anforderungen an Teile für die Luft- und Raumfahrt passen perfekt zu dem, was wir mit Additiver Fertigung herstellen können.“

Die Fraunhofer-Forschenden zeigen die Möglichkeiten der Additiven Fertigung in der Luft- und Raumfahrt anhand verschiedener Exponate. Dazu gehören LPBF-Raumfahrtkomponenten, die in Kooperation mit dem Space Team Aachen hergestellt wurden – unter anderem ein gewichtsoptimierter Drucktank, der zur Transpirationskühlung von Wiedereintrittskörpern im Projekt TRACE (TRAnspiration Cooling Experiment) eingesetzt wird. Als weiterer Demonstrator dient ein Gimbal zur Schubvektorsteuerung der Versuchsrakete ALYA.

Sie finden das Fraunhofer-Institut für Lasertechnik ILT auf der formnext 2023, 7. bis 10. November in Frankfurt am Main, am Fraunhofer-Gemeinschaftsstand Halle 11, Stand D31.

(Quelle: Presseinformation des Fraunhofer-Instituts für Lasertechnik ILT)

Schlagworte

Additive FertigungEHLAExtremes Hochgeschwindigkeits-LaserauftragschweißenHochgeschwindigkeits-LaserauftragschweißenKorrosionsschutzLaser Powder Bed FusionLaserauftragschweißenLPBFSMACVerschleißschutz

Verwandte Artikel

Versuchsanlage im H2GO-Projekt: Das Fraunhofer ILT beschichtet auf einer EHLA-Anlage Bauteile für Brennstoffzellen schnell und präzise mit Verschleißschutzschichten, um den Einstieg in die Großserie vorzubereiten.
02.12.2024

Stundenlanges Fräsen von Umformwerkzeugen passé

Im Nationalen Aktionsplan Brennstoffzellen-Produktion bringt das Fraunhofer ILT mithilfe des EHLA verschleißfeste Funktionsschichten endkonturnah auf günstigen Baustahl a...

Bipolarplatten Brennstoffzellen EHLA Extremes Hochgeschwindigkeits-Laserauftragschweißen Fräsen Laserauftragschweißen Umformwerkzeuge
Mehr erfahren
Mit der aktuell im Aufbau befindlichen Anlage lassen sich mithilfe von LCoS-SLMs durch gezielte Krümmung der Phasenfront des Laserstrahls nahezu beliebige Strahlprofile im LPBFProzess erzeugen.
11.11.2024

Flexible Strahlformungs-Plattform optimiert LPBF-Prozesse

Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed...

Additive Fertigung Laser Powder Bed Fusion LPBF SLM Spatial Light Modulators Strahlformung
Mehr erfahren
Übergabe der arc405 für den 3D-Metalldruck großer Bauteile an die TU Dortmund. (v.l.) Janis Blattner (GEFERTEC), Manuel Pinho Ferreira (TU Dortmund), Karsten Steuer (GEFERTEC).
25.10.2024

Eine arc405 von GEFERTEC für Forschungsprojekte

Am Lehrstuhl für Werkstofftechnologie an der TU Dortmund wird das Portfolio der Verfahren, die für die Forschung zur Verfügung stehen, um das WAAM-Verfahren erweitert. Z...

Additive Fertigung Automation Automatisierung Maschinenbau Titan WAAM Werkstofftechnik Wire Arc Additive Manufacturing
Mehr erfahren
Dr. Tim Lantzsch (links) vom Fraunhofer ILT und Dr. Stefan Leuders (rechts) von voestalpine diskutieren über die aktuellen Trends im metallischen 3D-Druck, die das Potenzial haben, die industrielle Produktion nachhaltig zu verändern.
24.10.2024

Additive Fertigung im technologischen Wandel

Dr. Stefan Leuders (voestalpine Additive Manufacturing Center GmbH), und Dr. Tim Lantzsch, (Fraunhofer ILT) diskutieren über die aktuellen Trends der Additiven Fertigung.

Additive Fertigung Automobilindustrie Laser Powder Bed Fusion Luftfahrt Maschinenbau Metallischer 3D-Druck Metallverarbeitung Nachhaltigkeit Prozesssicherheit Raumfahrt
Mehr erfahren
Julianna Posey beim Vorbereiten der Stahlproben für ihre Untersuchung. Die US-Amerikanerin ist für ihre Promotion an der Hochschule Osnabrück nach Deutschland gekommen
20.10.2024

Untersuchungen über die Schweißbarkeit von additiv gefertigtem und gegossenem Stahl

Julianna Posey untersucht Schweißverbindungen aus gegossenem und additiv gefertigtem Stahl. Im Fokus stehen die Ermüdungserscheinungen des gedruckten Stahls nach dem Schw...

3D-Druck Additive Fertigung Luftfahrt Medizintechnik Schweißbarkeit Stähle
Mehr erfahren